Redis-py 5.3.0 版本新增 Microsoft Entra ID 认证支持
Redis-py 作为 Python 生态中最流行的 Redis 客户端之一,在最新发布的 5.3.0 版本中新增了对 Microsoft Entra ID(原 Azure Active Directory)认证的支持。这一功能特别针对 Azure Cache for Redis 服务,为开发者提供了更安全、更现代化的身份验证方式。
背景与需求
在云原生应用开发中,使用托管服务凭证进行身份验证已成为最佳实践。Azure Cache for Redis 支持通过 Microsoft Entra ID 进行身份验证,这种方式相比传统的用户名/密码认证更加安全,因为它基于令牌(Token)机制,并且可以集成 Azure 的细粒度访问控制。
传统的 Redis 认证方式存在几个问题:
- 静态凭证需要定期轮换
- 凭证管理存在安全风险
- 缺乏细粒度的访问控制
Microsoft Entra ID 认证通过 OAuth 2.0 协议解决了这些问题,但需要客户端能够处理令牌的获取和刷新机制。
技术实现
Redis-py 5.3.0 通过引入新的身份提供者(IdentityProvider)接口来实现这一功能。开发者现在可以使用 Microsoft Entra ID 作为认证提供者,客户端会自动处理以下流程:
- 令牌获取:从 Microsoft Entra ID 获取初始访问令牌
- 认证过程:使用令牌作为密码进行 Redis AUTH 命令
- 令牌刷新:在令牌接近过期时自动获取新令牌
- 重新认证:使用新令牌重新进行 Redis 认证
使用方法
要使用这一新功能,开发者需要:
- 确保使用 redis-py 5.3.0 或更高版本
- 配置 Microsoft Entra ID 应用程序并获取必要的客户端ID和密钥
- 创建适当的 IdentityProvider 实例
示例代码展示了基本用法:
from redis import Redis
from redis.credentials import MicrosoftEntraTokenProvider
# 创建 Entra ID 认证提供者
credential_provider = MicrosoftEntraTokenProvider(
client_id="your-client-id",
client_secret="your-client-secret",
tenant_id="your-tenant-id"
)
# 创建 Redis 客户端
redis_client = Redis(
host="your-redis-host",
port=6380,
ssl=True,
credential_provider=credential_provider
)
优势与价值
这一功能的加入为开发者带来了几个重要好处:
- 增强安全性:消除了静态凭证存储的需求
- 简化运维:自动处理令牌刷新,无需人工干预
- 更好的集成:与 Azure 生态系统无缝协作
- 合规性支持:满足企业安全合规要求
注意事项
开发者在使用这一功能时需要注意:
- 确保应用程序在 Microsoft Entra ID 中有正确的权限配置
- 网络配置需要允许 Redis 客户端访问 Microsoft Entra ID 的令牌端点
- 令牌刷新机制会增加少量网络开销
- 首次连接可能因令牌获取而有额外延迟
总结
Redis-py 5.3.0 对 Microsoft Entra ID 认证的支持标志着该项目在云原生适配方面的重要进步。这一功能使得 Python 开发者能够更安全、更方便地使用 Azure Cache for Redis 服务,同时也为其他云服务商的身份认证集成提供了参考实现。
对于正在使用或计划使用 Azure Cache for Redis 的 Python 开发者来说,升级到 5.3.0 版本并采用这一新认证方式,将显著提升应用的安全性和可维护性。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









