使用pandas进行数据准备 - intro_stat_modeling_2017项目解析
2025-06-07 07:05:25作者:江焘钦
数据准备的重要性
在统计建模项目中,数据准备环节往往占据了大部分时间。根据经验,约80%的时间都花费在数据导入、清洗、验证和转换上。只有高质量的数据准备,才能确保后续建模工作的准确性和可靠性。
pandas简介
pandas是Python中用于数据分析的核心库,它提供了高效、灵活的数据结构,特别适合处理带标签的关系型数据。pandas主要适用于以下场景:
- 包含异构类型列的表格数据(类似SQL表或Excel电子表格)
- 时间序列数据(无论是否固定频率)
- 带有行列标签的矩阵数据
pandas核心特性
- 缺失值处理:内置智能处理缺失数据的机制
- 数据对齐:自动或显式地对齐不同数据集
- 分组操作:强大的groupby功能实现分割-应用-组合操作
- 灵活索引:支持标签索引、高级索引和子集选择
- 数据合并:提供直观的数据集合并与连接方法
- 数据重塑:支持数据透视和变形操作
- IO工具:支持从多种数据源读取数据
Series数据结构
Series是pandas中最基本的一维数据结构,类似于带标签的NumPy数组。
创建Series
import pandas as pd
counts = pd.Series([632, 1638, 569, 115])
默认情况下,Series会使用从0开始的整数索引。我们可以通过values和index属性访问其数据和索引:
counts.values # 获取值数组
counts.index # 获取索引对象
自定义索引
我们可以为Series指定有意义的标签作为索引:
bacteria = pd.Series([632, 1638, 569, 115],
index=['Firmicutes', 'Proteobacteria', 'Actinobacteria', 'Bacteroidetes'])
这样可以通过标签直接访问数据:
bacteria['Actinobacteria'] # 返回569
Series操作
Series支持各种操作,同时保持索引对齐:
# 数学运算
np.log(bacteria)
# 条件筛选
bacteria[bacteria>1000]
# 从字典创建
bacteria_dict = {'Firmicutes':632, 'Proteobacteria':1638}
bact = pd.Series(bacteria_dict)
DataFrame数据结构
DataFrame是pandas中最重要的二维表格型数据结构,可以看作多个Series的集合。
创建DataFrame
bacteria_data = pd.DataFrame({
'value':[632, 1638, 569, 115, 433, 1130, 754, 555],
'patient':[1,1,1,1,2,2,2,2],
'phylum':['Firmicutes','Proteobacteria','Actinobacteria',
'Bacteroidetes','Firmicutes','Proteobacteria',
'Actinobacteria','Bacteroidetes']
})
DataFrame操作
-
列顺序调整:可以通过指定列名顺序来调整显示
bacteria_data[['phylum', 'value', 'patient']] -
数据访问:可以通过列名访问特定列
bacteria_data['value'] # 获取value列 -
条件筛选:
bacteria_data[bacteria_data['value'] > 1000]
数据清洗与转换
在实际项目中,我们经常需要进行以下数据准备工作:
-
处理缺失值:
bacteria2.isnull() # 检测缺失值 bacteria2.fillna(0) # 填充缺失值 -
数据合并:
bacteria + bacteria2 # 按标签对齐运算 -
数据聚合:
bacteria_data.groupby('patient')['value'].mean()
最佳实践建议
- 始终检查数据的完整性和一致性
- 为数据列和索引使用有意义的名称
- 处理缺失值前先分析其产生原因
- 保持数据转换步骤的可追溯性
- 在转换前后验证数据形状和统计特性
通过掌握pandas的这些核心功能,我们可以高效地完成统计建模前的数据准备工作,为后续分析奠定坚实基础。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355