Aichat项目中RAG与函数调用冲突问题的分析与解决
2025-06-02 00:25:20作者:温玫谨Lighthearted
在Aichat项目中,用户反馈了一个关于检索增强生成(RAG)与函数调用功能冲突的问题。具体表现为:当用户激活某个代理(agent)的RAG功能后,无法直接调用该代理配置的函数,必须退出RAG模式才能执行函数操作。这一行为可能影响用户体验,尤其是在需要频繁切换RAG和函数调用的场景中。
问题背景
Aichat是一个基于大型语言模型(LLM)的对话系统,支持通过RAG技术从文档中检索信息,并通过函数调用实现特定功能。RAG功能允许代理从预加载的文档中提取相关信息以增强回答的准确性,而函数调用则使代理能够执行预定义的操作,如查询天气或执行系统命令。
问题分析
当用户通过.agent <agent_name>命令激活代理时,系统默认进入RAG模式。此时,代理会优先从文档中检索信息以响应用户查询。然而,这种模式下,代理似乎忽略了配置的函数调用能力,导致用户无法直接触发函数。只有在用户显式退出RAG模式(通过.exit RAG命令)后,函数调用功能才能恢复正常。
这种现象可能源于以下原因:
- RAG模式的优先级设置:系统在RAG模式下可能将文档检索作为唯一响应策略,未将函数调用纳入决策流程。
- 提示词模板设计:RAG的提示词模板(
rag_template)可能未包含对函数调用的支持,导致LLM在生成响应时未考虑函数调用选项。 - LLM的智能程度:部分LLM可能在多任务处理(如同时支持RAG和函数调用)上表现不佳,尤其是在复杂的上下文切换场景中。
解决方案
针对这一问题,可以从以下两个方向进行优化:
1. 选择更智能的LLM
LLM的智能程度直接影响其多任务处理能力。选择支持复杂上下文切换和多功能并行的LLM(如GPT-4或Claude 3)可能从根本上解决问题。这类模型能够更好地理解用户意图,并在RAG和函数调用之间动态切换。
2. 优化RAG提示词模板
通过调整rag_template的设计,可以显式告知LLM在RAG模式下仍需保留函数调用能力。例如,在模板中加入以下内容:
- 明确说明代理同时支持RAG和函数调用。
- 提供函数调用的触发条件示例。
- 在检索到无关信息时,引导LLM尝试函数调用。
以下是一个改进后的模板示例:
rag_template: |
你是一个支持文档检索和函数调用的代理。
当前已加载以下文档片段供参考:
<context>
{{context}}
</context>
若文档中未包含所需信息,可尝试调用以下函数:
{{tools}}
请根据用户问题选择最合适的响应方式。
总结
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143