AWS Deep Learning Containers发布TensorFlow 2.18.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像集合,这些镜像经过优化,可在AWS云环境中高效运行。DLC镜像包含了主流深度学习框架及其依赖项,用户无需自行配置复杂的软件环境,即可快速部署深度学习应用。
近日,AWS DLC项目发布了针对TensorFlow 2.18.0框架的推理专用容器镜像更新。这些镜像基于Ubuntu 20.04操作系统构建,支持Python 3.10环境,提供了CPU和GPU两种计算版本,适用于不同规模的推理任务部署需求。
镜像版本特性
本次发布的TensorFlow推理镜像包含两个主要变体:
-
CPU版本镜像:基于纯CPU计算环境优化,适用于不需要GPU加速的推理场景。镜像中包含了TensorFlow Serving API 2.18.0及相关依赖,如Protobuf 4.25.5、Cython 0.29.37等工具库。
-
GPU版本镜像:针对NVIDIA GPU计算卡优化,支持CUDA 12.2计算架构。除了包含CPU版本的所有组件外,还集成了cuDNN 8、NCCL等GPU加速库,可充分发挥现代GPU的并行计算能力。
技术栈组成
两个版本的镜像都基于Ubuntu 20.04 LTS操作系统构建,确保了系统层面的稳定性和兼容性。在软件包管理方面:
- 使用APT管理底层系统依赖,包括GCC工具链、标准C++库等基础组件
- 通过PIP管理Python生态的深度学习相关包和工具
镜像中预装了AWS命令行工具(AWS CLI 1.37.4)和Boto3 SDK(1.36.4),方便用户与AWS云服务进行交互。此外还包含了开发调试工具如Emacs编辑器,便于用户直接在容器内进行代码修改和问题排查。
应用场景建议
这些预构建的TensorFlow推理镜像特别适合以下场景:
- 大规模模型服务部署:利用TensorFlow Serving的高性能推理能力,构建可扩展的模型服务端点
- 生产环境快速部署:省去从零开始配置环境的复杂过程,直接使用经过AWS优化的容器镜像
- 混合计算架构:根据实际需求选择CPU或GPU版本,平衡计算成本和性能要求
对于需要自定义环境的用户,这些镜像也可以作为基础镜像使用,在其上添加特定业务逻辑或额外依赖。
版本兼容性说明
需要注意的是,本次发布的2.18.0版本属于TensorFlow 2.x系列,保持了API的向后兼容性。用户从较早的2.x版本迁移时,通常只需关注小版本间的差异调整,无需大规模代码重构。
AWS定期更新DLC镜像,建议用户关注版本更新日志,及时获取安全补丁和性能优化。对于生产环境,推荐使用特定版本号而非latest标签,确保部署的一致性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~065CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









