AWS Deep Learning Containers发布TensorFlow 2.18.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像集合,这些镜像经过优化,可在AWS云环境中高效运行。DLC镜像包含了主流深度学习框架及其依赖项,用户无需自行配置复杂的软件环境,即可快速部署深度学习应用。
近日,AWS DLC项目发布了针对TensorFlow 2.18.0框架的推理专用容器镜像更新。这些镜像基于Ubuntu 20.04操作系统构建,支持Python 3.10环境,提供了CPU和GPU两种计算版本,适用于不同规模的推理任务部署需求。
镜像版本特性
本次发布的TensorFlow推理镜像包含两个主要变体:
-
CPU版本镜像:基于纯CPU计算环境优化,适用于不需要GPU加速的推理场景。镜像中包含了TensorFlow Serving API 2.18.0及相关依赖,如Protobuf 4.25.5、Cython 0.29.37等工具库。
-
GPU版本镜像:针对NVIDIA GPU计算卡优化,支持CUDA 12.2计算架构。除了包含CPU版本的所有组件外,还集成了cuDNN 8、NCCL等GPU加速库,可充分发挥现代GPU的并行计算能力。
技术栈组成
两个版本的镜像都基于Ubuntu 20.04 LTS操作系统构建,确保了系统层面的稳定性和兼容性。在软件包管理方面:
- 使用APT管理底层系统依赖,包括GCC工具链、标准C++库等基础组件
- 通过PIP管理Python生态的深度学习相关包和工具
镜像中预装了AWS命令行工具(AWS CLI 1.37.4)和Boto3 SDK(1.36.4),方便用户与AWS云服务进行交互。此外还包含了开发调试工具如Emacs编辑器,便于用户直接在容器内进行代码修改和问题排查。
应用场景建议
这些预构建的TensorFlow推理镜像特别适合以下场景:
- 大规模模型服务部署:利用TensorFlow Serving的高性能推理能力,构建可扩展的模型服务端点
- 生产环境快速部署:省去从零开始配置环境的复杂过程,直接使用经过AWS优化的容器镜像
- 混合计算架构:根据实际需求选择CPU或GPU版本,平衡计算成本和性能要求
对于需要自定义环境的用户,这些镜像也可以作为基础镜像使用,在其上添加特定业务逻辑或额外依赖。
版本兼容性说明
需要注意的是,本次发布的2.18.0版本属于TensorFlow 2.x系列,保持了API的向后兼容性。用户从较早的2.x版本迁移时,通常只需关注小版本间的差异调整,无需大规模代码重构。
AWS定期更新DLC镜像,建议用户关注版本更新日志,及时获取安全补丁和性能优化。对于生产环境,推荐使用特定版本号而非latest标签,确保部署的一致性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00