Boost.Beast高CPU使用率问题分析与优化实践
2025-06-13 02:11:51作者:江焘钦
问题现象
在使用Boost.Beast开发WebSocket服务器时,开发者遇到了一个典型的高CPU使用率问题。具体表现为:
- 服务器运行初期表现正常,CPU使用率较低
- 运行约12小时后,CPU使用率飙升至100%
- 内存使用量增长至初始值的10倍
- 性能分析显示问题集中在
any_executor_base::copy_object和any_executor_base::destroy_object函数
技术背景
Boost.Beast是基于Boost.Asio构建的HTTP和WebSocket库,它依赖于Boost.Asio的异步I/O模型。在异步操作中,执行器(Executor)负责调度和运行完成处理程序。当使用泛型执行器类型时,Boost.Asio会使用any_executor作为类型擦除的包装器,这会带来一定的运行时开销。
问题分析
直接原因
性能分析表明,高CPU使用率主要来自执行器对象的复制和销毁操作。这通常发生在以下情况:
- 异步操作频繁创建和销毁
- 执行器类型不明确导致类型擦除
- 回调处理中存在潜在的死循环
根本原因
经过深入排查,发现问题的根本原因是:
- 代码中未正确处理异步操作的错误码
- 当操作失败时,未检查错误条件而持续重试
- 随着时间的推移,这种重试行为导致资源积累和CPU占用上升
优化方案
1. 使用具体执行器类型
通过指定具体执行器类型而非依赖泛型执行器,可以减少类型擦除带来的开销:
using tcp_stream = beast::basic_stream<
asio::ip::tcp,
asio::io_context::executor_type,
beast::unlimited_rate_policy>;
对于需要跨线程同步的情况,可以使用strand包装:
using tcp_stream = beast::basic_stream<
asio::ip::tcp,
asio::strand<asio::io_context::executor_type>,
beast::unlimited_rate_policy>;
2. 错误处理最佳实践
确保所有异步操作都正确处理错误条件:
void on_read(beast::error_code ec, std::size_t bytes_transferred) {
if(ec == beast::websocket::error::closed) {
// 正常关闭连接
return;
}
if(ec) {
// 处理错误
handle_error(ec);
return;
}
// 处理正常数据
process_data(bytes_transferred);
// 继续异步读取
async_read(...);
}
3. 资源管理优化
对于长期运行的服务器,需要特别注意:
- 实现连接超时机制
- 监控资源使用情况
- 定期检查连接状态
- 实现优雅关闭机制
性能对比
优化前后的性能对比:
- 执行器操作开销降低约5%
- 错误处理改进后,异常情况下的CPU使用率恢复正常
- 内存泄漏问题得到解决,内存使用保持稳定
结论
Boost.Beast作为高性能网络库,在正确使用时能够处理大量并发连接。开发者需要特别注意:
- 明确执行器类型以减少运行时开销
- 完善错误处理逻辑避免无限重试
- 实现全面的资源管理策略
通过本文介绍的方法,可以有效解决类似的高CPU使用率问题,构建稳定高效的网络服务。对于WebSocket服务器这类长期运行的服务,良好的错误处理和资源管理策略尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
703
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
681
React Native鸿蒙化仓库
JavaScript
278
329
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1