Azure Cosmos DB NoSQL Copilot 项目快速入门指南
2025-06-28 03:24:33作者:廉彬冶Miranda
项目概述
Azure Cosmos DB NoSQL Copilot 是一个基于大语言模型(LLM)构建的智能对话应用示例,它结合了Azure Cosmos DB的NoSQL数据库能力与OpenAI的GPT模型,为产品目录查询提供了自然语言交互体验。该项目展示了如何在实际应用中实现上下文感知对话、令牌管理、语义缓存等关键技术。
环境准备
在开始之前,请确保您已配置好开发环境并正确部署了项目所需的Azure资源。项目使用Adventure Works自行车零售数据库作为示例数据集,包含自行车、车架、座椅、配件等产品类别,每个产品都有颜色、价格等属性。
上下文对话功能体验
基础对话测试
- 启动应用调试会话
- 点击"Create New Chat"创建新会话
- 输入问题:"What bikes do you have"
- 观察系统返回的自行车列表及详细信息
- 输入后续问题:"Any in carbon fiber"
- 系统将返回碳纤维材质的自行车列表
这个测试展示了LLM如何保持对话上下文并做出适当响应。注意观察响应中显示的令牌数量和时间消耗指标,这对理解系统性能至关重要。
令牌管理机制解析
令牌基础概念
令牌是LLM处理文本的基本单位,大约4个字符对应1个令牌。LLM对单次请求和响应的令牌数量有限制,因此需要精细管理。
项目中的令牌控制策略
- 上下文窗口限制:通过maxContextWindow配置控制聊天历史记录长度
- 查询结果限制:productMaxResults参数限制向量查询返回的项目数量
- 令牌计算:使用Microsoft.ML.Tokenizers库(类似OpenAI的Tiktoken)计算用户提示的令牌消耗
- 双保险机制:
- maxContextTokens限制上下文窗口的令牌数
- maxRagTokens限制向量查询结果的令牌数
语义缓存技术详解
语义缓存与传统缓存的区别
传统缓存基于键值对的精确匹配,而语义缓存使用向量(嵌入)表示查询意图,能在语义层面匹配相似问题。
上下文感知缓存实现
项目采用缓存整个上下文窗口的策略,而非单个问答对,确保后续相似对话能获得上下文一致的响应。例如:
- 用户A询问:"最大的北美湖泊是什么?" → 返回"苏必利尔湖"
- 用户A追问:"第二大的呢?" → 返回"休伦湖"
- 用户B询问:"最大的北美体育场是什么?" → 返回"密歇根体育场"
- 用户B追问:"第二大的呢?" → 由于缓存了完整上下文,不会错误返回"休伦湖"
语义缓存实践测试
- 清除缓存后创建新会话
- 输入系列问题观察初始响应(Cache Hit: False)
- 切换用户重复相同问题序列
- 观察缓存命中情况(Cache Hit: True)和零令牌消耗
相似度分数调优
相似度分数原理
向量查询返回0(无相似性)到1(完全匹配)的相似度分数,用于衡量查询意图的接近程度。
调优实践
- 默认相似度分数0.95要求几乎完全相同的问题才能命中缓存
- 修改CacheSimilarityScore为0.90后,语义相近但措辞不同的问题也能命中
- 通过实验找到适合业务场景的最佳阈值
混合搜索功能(可选)
功能对比
- 纯向量搜索:基于语义相似度返回结果
- 混合搜索:结合向量搜索和全文搜索(需在支持区域部署),重新排序结果
测试方法
- 修改代码切换搜索方法
- 查询"特价轻量自行车"等复杂问题
- 比较两种方法的返回结果差异
最佳实践建议
- 根据业务需求调整maxContextTokens和maxRagTokens的平衡
- 相似度分数需要结合实际对话数据进行调优
- 生产环境中应考虑实现更精细的令牌预算管理
- 混合搜索能显著提升复杂查询的准确性
总结
Azure Cosmos DB NoSQL Copilot项目展示了如何将LLM与数据库能力有机结合,通过上下文管理、令牌控制、语义缓存等关键技术实现高效、经济的智能对话系统。开发者可以基于此示例构建更复杂的业务场景应用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
226
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
暂无简介
Dart
596
130
React Native鸿蒙化仓库
JavaScript
233
309
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
仓颉编译器源码及 cjdb 调试工具。
C++
123
627
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
361
2.58 K