MOOSE 开源项目使用教程
2024-09-14 17:14:50作者:董宙帆
1. 项目目录结构及介绍
MOOSE(Multiphysics Object-Oriented Simulation Environment)是一个用于多物理场仿真的开源框架。以下是MOOSE项目的目录结构及其介绍:
moose/
├── framework/
│ ├── src/
│ ├── include/
│ └── test/
├── modules/
│ ├── tensor_mechanics/
│ ├── heat_conduction/
│ └── ...
├── examples/
│ ├── tutorials/
│ ├── benchmarks/
│ └── ...
├── scripts/
│ ├── run_tests.sh
│ └── ...
├── doc/
│ ├── tutorials/
│ ├── examples/
│ └── ...
└── README.md
- framework/: 包含MOOSE框架的核心代码,包括源文件(src)、头文件(include)和测试文件(test)。
- modules/: 包含各种模块,每个模块专注于特定的物理场,如力学(tensor_mechanics)和热传导(heat_conduction)。
- examples/: 包含示例和教程,帮助用户理解和使用MOOSE。
- scripts/: 包含用于运行测试和构建项目的脚本。
- doc/: 包含项目的文档,包括教程和示例。
- README.md: 项目的介绍文件,包含项目的基本信息和使用说明。
2. 项目启动文件介绍
MOOSE项目的启动文件通常是一个Python脚本,用于配置和运行仿真。以下是一个典型的启动文件示例:
#!/usr/bin/env python
import os
import sys
# 添加MOOSE框架路径
sys.path.append(os.path.join(os.getcwd(), 'framework'))
# 导入MOOSE模块
from MooseApp import MooseApp
# 创建MOOSE应用实例
app = MooseApp()
# 配置仿真参数
app.setInputFile('input.i')
app.setNumProcessors(4)
# 运行仿真
app.run()
- sys.path.append(): 添加MOOSE框架的路径,确保Python可以找到MOOSE模块。
- MooseApp(): 创建MOOSE应用实例。
- setInputFile(): 设置输入文件,通常是一个包含仿真参数的INI文件。
- setNumProcessors(): 设置并行处理器的数量。
- run(): 运行仿真。
3. 项目配置文件介绍
MOOSE项目的配置文件通常是一个INI文件,用于定义仿真的物理模型、边界条件、材料属性等。以下是一个简单的配置文件示例:
[Mesh]
type = GeneratedMesh
dim = 2
nx = 10
ny = 10
[]
[Variables]
[./temperature]
order = FIRST
family = LAGRANGE
[../]
[]
[Kernels]
[./heat_conduction]
type = HeatConduction
variable = temperature
[../]
[]
[BCs]
[./left]
type = DirichletBC
variable = temperature
boundary = left
value = 100
[../]
[./right]
type = DirichletBC
variable = temperature
boundary = right
value = 0
[../]
[]
[Executioner]
type = Steady
solve_type = NEWTON
[]
[Outputs]
exodus = true
[]
- [Mesh]: 定义网格类型和维度。
- [Variables]: 定义仿真中的变量,如温度(temperature)。
- [Kernels]: 定义物理模型,如热传导(HeatConduction)。
- [BCs]: 定义边界条件,如Dirichlet边界条件。
- [Executioner]: 定义仿真执行器,如稳态求解器(Steady)。
- [Outputs]: 定义输出格式,如Exodus格式。
通过以上配置文件,用户可以定义和运行一个简单的二维热传导仿真。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
389
Ascend Extension for PyTorch
Python
248
284
暂无简介
Dart
701
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
274
329
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
280
126
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
仓颉编译器源码及 cjdb 调试工具。
C++
139
871