在AWS EKS上使用Sysbox运行Docker-in-Docker容器的实践指南
Sysbox是一个开源的容器运行时工具,它能够增强容器的隔离性并支持在容器内部运行特权操作。本文将详细介绍如何在AWS EKS集群中部署Sysbox,并成功运行Docker-in-Docker容器。
环境准备
首先需要创建一个AWS EKS 1.29集群,使用terraform-aws-modules/eks/aws模块进行部署。关键配置包括:
- 集群版本:1.29
- 节点组使用t3.xlarge实例类型
- 节点操作系统为Ubuntu 22.04 LTS
- 存储配置为100GB gp3卷
Sysbox安装
在EKS集群上安装Sysbox时,需要确保sysbox-deploy-k8s pod正常运行。通过检查pod状态可以确认安装是否成功:
kubectl get pods -n kube-system sysbox-deploy-k8s-xxxxx -o json | jq .status
正常运行的Sysbox pod应显示所有条件均为"True",容器状态为"Running"。
运行Docker-in-Docker容器
要在Sysbox上运行Docker-in-Docker容器,需要特别注意pod的配置。一个常见的错误是直接使用如下配置:
apiVersion: v1
kind: Pod
metadata:
name: dind
spec:
runtimeClassName: sysbox-runc
containers:
- name: dind
image: docker:dind
这种配置会导致容器创建失败,错误信息显示为"failed to mount /var/lib/containers/storage/overlay/.../merged: invalid argument"。
关键配置项
正确的配置需要在pod的metadata部分添加关键的用户命名空间注解:
apiVersion: v1
kind: Pod
metadata:
name: dind
annotations:
io.kubernetes.cri-o.userns-mode: "auto:size=65536"
spec:
runtimeClassName: sysbox-runc
containers:
- name: dind
image: docker:dind
这个注解io.kubernetes.cri-o.userns-mode: "auto:size=65536"是必须的,它告诉CRI-O运行时自动为用户命名空间分配65536个UID/GID。Sysbox依赖用户命名空间来提供容器隔离,缺少这个配置会导致挂载失败。
原理分析
Sysbox通过用户命名空间(user namespace)技术实现了容器内的特权操作支持。当配置了正确的用户命名空间后:
- 容器内的root用户会被映射到主机上的非特权用户
- 容器可以安全地执行需要特权的操作
- 文件系统挂载操作能够正常工作
在AWS EKS环境中,使用CRI-O作为容器运行时,必须明确指定用户命名空间的配置,这是与本地Docker环境不同的地方。
最佳实践
- 始终检查sysbox-deploy-k8s pod的状态,确保Sysbox运行时已正确安装
- 为需要使用Sysbox的pod添加用户命名空间注解
- 监控pod事件日志,及时发现挂载或权限相关问题
- 考虑在节点选择器中使用
sysbox-runtime=running标签,确保pod调度到已安装Sysbox的节点
通过以上配置,Sysbox能够在AWS EKS环境中完美支持Docker-in-Docker等需要特权操作的容器场景,为CI/CD等用例提供了安全可靠的运行环境。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00