在AWS EKS上使用Sysbox运行Docker-in-Docker容器的实践指南
Sysbox是一个开源的容器运行时工具,它能够增强容器的隔离性并支持在容器内部运行特权操作。本文将详细介绍如何在AWS EKS集群中部署Sysbox,并成功运行Docker-in-Docker容器。
环境准备
首先需要创建一个AWS EKS 1.29集群,使用terraform-aws-modules/eks/aws模块进行部署。关键配置包括:
- 集群版本:1.29
- 节点组使用t3.xlarge实例类型
- 节点操作系统为Ubuntu 22.04 LTS
- 存储配置为100GB gp3卷
Sysbox安装
在EKS集群上安装Sysbox时,需要确保sysbox-deploy-k8s pod正常运行。通过检查pod状态可以确认安装是否成功:
kubectl get pods -n kube-system sysbox-deploy-k8s-xxxxx -o json | jq .status
正常运行的Sysbox pod应显示所有条件均为"True",容器状态为"Running"。
运行Docker-in-Docker容器
要在Sysbox上运行Docker-in-Docker容器,需要特别注意pod的配置。一个常见的错误是直接使用如下配置:
apiVersion: v1
kind: Pod
metadata:
name: dind
spec:
runtimeClassName: sysbox-runc
containers:
- name: dind
image: docker:dind
这种配置会导致容器创建失败,错误信息显示为"failed to mount /var/lib/containers/storage/overlay/.../merged: invalid argument"。
关键配置项
正确的配置需要在pod的metadata部分添加关键的用户命名空间注解:
apiVersion: v1
kind: Pod
metadata:
name: dind
annotations:
io.kubernetes.cri-o.userns-mode: "auto:size=65536"
spec:
runtimeClassName: sysbox-runc
containers:
- name: dind
image: docker:dind
这个注解io.kubernetes.cri-o.userns-mode: "auto:size=65536"是必须的,它告诉CRI-O运行时自动为用户命名空间分配65536个UID/GID。Sysbox依赖用户命名空间来提供容器隔离,缺少这个配置会导致挂载失败。
原理分析
Sysbox通过用户命名空间(user namespace)技术实现了容器内的特权操作支持。当配置了正确的用户命名空间后:
- 容器内的root用户会被映射到主机上的非特权用户
- 容器可以安全地执行需要特权的操作
- 文件系统挂载操作能够正常工作
在AWS EKS环境中,使用CRI-O作为容器运行时,必须明确指定用户命名空间的配置,这是与本地Docker环境不同的地方。
最佳实践
- 始终检查sysbox-deploy-k8s pod的状态,确保Sysbox运行时已正确安装
- 为需要使用Sysbox的pod添加用户命名空间注解
- 监控pod事件日志,及时发现挂载或权限相关问题
- 考虑在节点选择器中使用
sysbox-runtime=running标签,确保pod调度到已安装Sysbox的节点
通过以上配置,Sysbox能够在AWS EKS环境中完美支持Docker-in-Docker等需要特权操作的容器场景,为CI/CD等用例提供了安全可靠的运行环境。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00