Ragas项目中使用ChatOllama模型进行评测的注意事项
在自然语言处理领域,Ragas作为一个开源的评估框架,为大型语言模型(LLM)的问答系统提供了全面的评估能力。然而,在实际应用中,开发者可能会遇到一些兼容性问题,特别是在尝试使用非标准LLM模型时。
问题背景
许多开发者希望使用ChatOllama模型(特别是Mistral模型)作为Ragas评估框架中的语言模型。然而,直接使用ChatOllama实例时,系统会抛出"AttributeError: 'Mistral' object has no attribute 'set_run_config'"的错误。这是因为Ragas框架对集成的语言模型有特定的接口要求。
技术分析
Ragas框架要求集成的语言模型必须实现特定的接口方法,包括set_run_config。而标准的ChatOllama模型并没有原生实现这些接口方法。这实际上是框架设计中的一种常见模式——通过定义明确的接口来确保组件间的兼容性。
解决方案
经过实践验证,可以通过以下方式解决这个问题:
-
使用LangchainLLMWrapper包装器:这是Ragas提供的一个适配器类,专门用于将Langchain兼容的模型转换为Ragas可识别的格式。
-
同时处理Embeddings:类似的,对于嵌入模型也需要使用LangchainEmbeddingsWrapper进行包装。
-
手动设置Metrics属性:需要显式地将包装后的模型设置到各个评估指标中。
完整实现示例
from langchain_ollama.chat_models import ChatOllama
from langchain_ollama.embeddings import OllamaEmbeddings
from ragas import evaluate
from ragas.metrics import answer_relevancy
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper
from datasets import Dataset
import json
# 初始化模型并包装
req_llm = ChatOllama(model="mistral")
wrapper_llm = LangchainLLMWrapper(req_llm)
embeddings = OllamaEmbeddings(model="mistral")
wrapper_embedding = LangchainEmbeddingsWrapper(embeddings)
# 准备评估指标
metrics = [answer_relevancy]
# 将包装后的模型设置到指标中
for metric in metrics:
metric.__setattr__("llm", wrapper_llm)
if hasattr(metric, "embeddings"):
metric.__setattr__("embeddings", wrapper_embedding)
# 执行评估
results = evaluate(
dataset=your_dataset,
metrics=metrics,
llm=wrapper_llm,
embeddings=wrapper_embedding,
)
# 输出结果
print(json.dumps(results, indent=3))
最佳实践建议
-
版本兼容性检查:确保使用的Ragas版本是最新的,因为框架在不断改进对第三方模型的支持。
-
错误处理:在实际应用中,应该添加适当的错误处理机制,特别是当处理生产环境中的评估任务时。
-
性能考量:使用包装器会引入额外的开销,在大规模评估时需要考虑其对性能的影响。
-
模型选择:虽然可以使用各种模型进行评估,但建议选择经过验证的模型组合以获得更可靠的结果。
通过这种方法,开发者可以灵活地在Ragas框架中使用各种Langchain兼容的模型,包括ChatOllama提供的Mistral等模型,从而扩展评估框架的应用范围。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00