Ragas项目中使用ChatOllama模型进行评测的注意事项
在自然语言处理领域,Ragas作为一个开源的评估框架,为大型语言模型(LLM)的问答系统提供了全面的评估能力。然而,在实际应用中,开发者可能会遇到一些兼容性问题,特别是在尝试使用非标准LLM模型时。
问题背景
许多开发者希望使用ChatOllama模型(特别是Mistral模型)作为Ragas评估框架中的语言模型。然而,直接使用ChatOllama实例时,系统会抛出"AttributeError: 'Mistral' object has no attribute 'set_run_config'"的错误。这是因为Ragas框架对集成的语言模型有特定的接口要求。
技术分析
Ragas框架要求集成的语言模型必须实现特定的接口方法,包括set_run_config。而标准的ChatOllama模型并没有原生实现这些接口方法。这实际上是框架设计中的一种常见模式——通过定义明确的接口来确保组件间的兼容性。
解决方案
经过实践验证,可以通过以下方式解决这个问题:
-
使用LangchainLLMWrapper包装器:这是Ragas提供的一个适配器类,专门用于将Langchain兼容的模型转换为Ragas可识别的格式。
-
同时处理Embeddings:类似的,对于嵌入模型也需要使用LangchainEmbeddingsWrapper进行包装。
-
手动设置Metrics属性:需要显式地将包装后的模型设置到各个评估指标中。
完整实现示例
from langchain_ollama.chat_models import ChatOllama
from langchain_ollama.embeddings import OllamaEmbeddings
from ragas import evaluate
from ragas.metrics import answer_relevancy
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper
from datasets import Dataset
import json
# 初始化模型并包装
req_llm = ChatOllama(model="mistral")
wrapper_llm = LangchainLLMWrapper(req_llm)
embeddings = OllamaEmbeddings(model="mistral")
wrapper_embedding = LangchainEmbeddingsWrapper(embeddings)
# 准备评估指标
metrics = [answer_relevancy]
# 将包装后的模型设置到指标中
for metric in metrics:
metric.__setattr__("llm", wrapper_llm)
if hasattr(metric, "embeddings"):
metric.__setattr__("embeddings", wrapper_embedding)
# 执行评估
results = evaluate(
dataset=your_dataset,
metrics=metrics,
llm=wrapper_llm,
embeddings=wrapper_embedding,
)
# 输出结果
print(json.dumps(results, indent=3))
最佳实践建议
-
版本兼容性检查:确保使用的Ragas版本是最新的,因为框架在不断改进对第三方模型的支持。
-
错误处理:在实际应用中,应该添加适当的错误处理机制,特别是当处理生产环境中的评估任务时。
-
性能考量:使用包装器会引入额外的开销,在大规模评估时需要考虑其对性能的影响。
-
模型选择:虽然可以使用各种模型进行评估,但建议选择经过验证的模型组合以获得更可靠的结果。
通过这种方法,开发者可以灵活地在Ragas框架中使用各种Langchain兼容的模型,包括ChatOllama提供的Mistral等模型,从而扩展评估框架的应用范围。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00