Ragas项目中使用ChatOllama模型进行评测的注意事项
在自然语言处理领域,Ragas作为一个开源的评估框架,为大型语言模型(LLM)的问答系统提供了全面的评估能力。然而,在实际应用中,开发者可能会遇到一些兼容性问题,特别是在尝试使用非标准LLM模型时。
问题背景
许多开发者希望使用ChatOllama模型(特别是Mistral模型)作为Ragas评估框架中的语言模型。然而,直接使用ChatOllama实例时,系统会抛出"AttributeError: 'Mistral' object has no attribute 'set_run_config'"的错误。这是因为Ragas框架对集成的语言模型有特定的接口要求。
技术分析
Ragas框架要求集成的语言模型必须实现特定的接口方法,包括set_run_config。而标准的ChatOllama模型并没有原生实现这些接口方法。这实际上是框架设计中的一种常见模式——通过定义明确的接口来确保组件间的兼容性。
解决方案
经过实践验证,可以通过以下方式解决这个问题:
-
使用LangchainLLMWrapper包装器:这是Ragas提供的一个适配器类,专门用于将Langchain兼容的模型转换为Ragas可识别的格式。
-
同时处理Embeddings:类似的,对于嵌入模型也需要使用LangchainEmbeddingsWrapper进行包装。
-
手动设置Metrics属性:需要显式地将包装后的模型设置到各个评估指标中。
完整实现示例
from langchain_ollama.chat_models import ChatOllama
from langchain_ollama.embeddings import OllamaEmbeddings
from ragas import evaluate
from ragas.metrics import answer_relevancy
from ragas.llms import LangchainLLMWrapper
from ragas.embeddings import LangchainEmbeddingsWrapper
from datasets import Dataset
import json
# 初始化模型并包装
req_llm = ChatOllama(model="mistral")
wrapper_llm = LangchainLLMWrapper(req_llm)
embeddings = OllamaEmbeddings(model="mistral")
wrapper_embedding = LangchainEmbeddingsWrapper(embeddings)
# 准备评估指标
metrics = [answer_relevancy]
# 将包装后的模型设置到指标中
for metric in metrics:
metric.__setattr__("llm", wrapper_llm)
if hasattr(metric, "embeddings"):
metric.__setattr__("embeddings", wrapper_embedding)
# 执行评估
results = evaluate(
dataset=your_dataset,
metrics=metrics,
llm=wrapper_llm,
embeddings=wrapper_embedding,
)
# 输出结果
print(json.dumps(results, indent=3))
最佳实践建议
-
版本兼容性检查:确保使用的Ragas版本是最新的,因为框架在不断改进对第三方模型的支持。
-
错误处理:在实际应用中,应该添加适当的错误处理机制,特别是当处理生产环境中的评估任务时。
-
性能考量:使用包装器会引入额外的开销,在大规模评估时需要考虑其对性能的影响。
-
模型选择:虽然可以使用各种模型进行评估,但建议选择经过验证的模型组合以获得更可靠的结果。
通过这种方法,开发者可以灵活地在Ragas框架中使用各种Langchain兼容的模型,包括ChatOllama提供的Mistral等模型,从而扩展评估框架的应用范围。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00