首页
/ Qwen2.5-VL模型在Grounding任务中的图像Resize处理问题分析

Qwen2.5-VL模型在Grounding任务中的图像Resize处理问题分析

2025-05-31 10:29:40作者:平淮齐Percy

在视觉语言模型Qwen2.5-VL的实际应用中,研究人员发现了一个关于图像预处理的重要技术细节:当处理Grounding任务时,图像经过processor后的resize操作会显著影响bounding box的预测准确性。

问题背景

Qwen2.5-VL模型在处理视觉定位(Grounding)任务时,需要同时处理图像和文本信息。训练数据中提供的坐标通常是非归一化的原始坐标。当输入图像经过预处理流程(包括resize等操作)后,如果bounding box坐标没有相应地进行调整,就会导致预测结果出现偏差。

技术细节分析

在模型实现中,bounding box坐标应该随着图像尺寸的变化而进行自适应调整。具体来说,当图像被resize时,需要计算原始尺寸与目标尺寸之间的比例关系,然后将bounding box坐标按相同比例进行缩放。

研究人员在实际测试中发现,虽然框架中已经包含了坐标调整的逻辑,但在某些情况下可能没有正确执行。这导致训练过程中bounding box的归一化宽度(norm_width)与原始宽度(width)保持相同,而没有根据图像的实际resize比例进行调整。

解决方案

针对这个问题,开发者提供了两种解决方案:

  1. 手动计算比例因子:通过记录图像原始尺寸与resize后尺寸的比例关系,在模型输出bounding box预测后,反向应用这些比例因子来恢复正确的坐标位置。这种方法可以将预测准确率提升约10%。

  2. 框架修复:模型维护者已经修复了框架中的相关问题,确保在训练过程中bounding box坐标能够正确随图像resize而调整。用户只需更新到最新版本即可获得这一改进。

最佳实践建议

对于使用Qwen2.5-VL进行Grounding任务开发的用户,建议:

  1. 确保使用最新版本的框架,以获得自动的坐标调整功能
  2. 在自定义预处理流程时,显式地记录和处理图像尺寸变化
  3. 对于OCR和Grounding任务,特别注意图像resize对预测结果的影响
  4. 在模型评估阶段,加入对resize影响的专项测试

通过正确处理图像resize与bounding box坐标的关系,可以显著提升Qwen2.5-VL模型在视觉定位任务中的表现。

登录后查看全文
热门项目推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
kernelkernel
deepin linux kernel
C
22
5