Qwen2.5-VL模型在Grounding任务中的图像Resize处理问题分析
在视觉语言模型Qwen2.5-VL的实际应用中,研究人员发现了一个关于图像预处理的重要技术细节:当处理Grounding任务时,图像经过processor后的resize操作会显著影响bounding box的预测准确性。
问题背景
Qwen2.5-VL模型在处理视觉定位(Grounding)任务时,需要同时处理图像和文本信息。训练数据中提供的坐标通常是非归一化的原始坐标。当输入图像经过预处理流程(包括resize等操作)后,如果bounding box坐标没有相应地进行调整,就会导致预测结果出现偏差。
技术细节分析
在模型实现中,bounding box坐标应该随着图像尺寸的变化而进行自适应调整。具体来说,当图像被resize时,需要计算原始尺寸与目标尺寸之间的比例关系,然后将bounding box坐标按相同比例进行缩放。
研究人员在实际测试中发现,虽然框架中已经包含了坐标调整的逻辑,但在某些情况下可能没有正确执行。这导致训练过程中bounding box的归一化宽度(norm_width)与原始宽度(width)保持相同,而没有根据图像的实际resize比例进行调整。
解决方案
针对这个问题,开发者提供了两种解决方案:
-
手动计算比例因子:通过记录图像原始尺寸与resize后尺寸的比例关系,在模型输出bounding box预测后,反向应用这些比例因子来恢复正确的坐标位置。这种方法可以将预测准确率提升约10%。
-
框架修复:模型维护者已经修复了框架中的相关问题,确保在训练过程中bounding box坐标能够正确随图像resize而调整。用户只需更新到最新版本即可获得这一改进。
最佳实践建议
对于使用Qwen2.5-VL进行Grounding任务开发的用户,建议:
- 确保使用最新版本的框架,以获得自动的坐标调整功能
- 在自定义预处理流程时,显式地记录和处理图像尺寸变化
- 对于OCR和Grounding任务,特别注意图像resize对预测结果的影响
- 在模型评估阶段,加入对resize影响的专项测试
通过正确处理图像resize与bounding box坐标的关系,可以显著提升Qwen2.5-VL模型在视觉定位任务中的表现。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00