Qwen2.5-VL模型在Grounding任务中的图像Resize处理问题分析
在视觉语言模型Qwen2.5-VL的实际应用中,研究人员发现了一个关于图像预处理的重要技术细节:当处理Grounding任务时,图像经过processor后的resize操作会显著影响bounding box的预测准确性。
问题背景
Qwen2.5-VL模型在处理视觉定位(Grounding)任务时,需要同时处理图像和文本信息。训练数据中提供的坐标通常是非归一化的原始坐标。当输入图像经过预处理流程(包括resize等操作)后,如果bounding box坐标没有相应地进行调整,就会导致预测结果出现偏差。
技术细节分析
在模型实现中,bounding box坐标应该随着图像尺寸的变化而进行自适应调整。具体来说,当图像被resize时,需要计算原始尺寸与目标尺寸之间的比例关系,然后将bounding box坐标按相同比例进行缩放。
研究人员在实际测试中发现,虽然框架中已经包含了坐标调整的逻辑,但在某些情况下可能没有正确执行。这导致训练过程中bounding box的归一化宽度(norm_width)与原始宽度(width)保持相同,而没有根据图像的实际resize比例进行调整。
解决方案
针对这个问题,开发者提供了两种解决方案:
-
手动计算比例因子:通过记录图像原始尺寸与resize后尺寸的比例关系,在模型输出bounding box预测后,反向应用这些比例因子来恢复正确的坐标位置。这种方法可以将预测准确率提升约10%。
-
框架修复:模型维护者已经修复了框架中的相关问题,确保在训练过程中bounding box坐标能够正确随图像resize而调整。用户只需更新到最新版本即可获得这一改进。
最佳实践建议
对于使用Qwen2.5-VL进行Grounding任务开发的用户,建议:
- 确保使用最新版本的框架,以获得自动的坐标调整功能
- 在自定义预处理流程时,显式地记录和处理图像尺寸变化
- 对于OCR和Grounding任务,特别注意图像resize对预测结果的影响
- 在模型评估阶段,加入对resize影响的专项测试
通过正确处理图像resize与bounding box坐标的关系,可以显著提升Qwen2.5-VL模型在视觉定位任务中的表现。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00