机器学习项目CrazyXiao中的NLP特征选择技术详解
2025-06-07 06:43:56作者:龚格成
引言
在自然语言处理(NLP)领域,特征选择是构建高效模型的关键步骤。本文将深入探讨CrazyXiao机器学习项目中使用的几种核心特征选择技术,包括TF-IDF、词袋模型、点互信息和互信息等,帮助读者理解这些技术的原理和应用场景。
TF-IDF:词频-逆文档频率
基本概念
TF-IDF(Term Frequency-Inverse Document Frequency)是一种统计方法,用于评估一个词对于一个文档集或语料库中的其中一份文档的重要程度。
工作原理
-
词频(TF):计算某个词在文档中出现的频率
TF = (词在文档中出现的次数)/(文档总词数)
-
逆文档频率(IDF):衡量词的普遍重要性
IDF = log(文档总数/(包含该词的文档数+1))
-
TF-IDF值:将两者相乘
TF-IDF = TF * IDF
实际意义
TF-IDF能够有效降低常见词(如"的"、"是"等)的权重,提高具有区分能力的词的权重。例如在CrazyXiao项目中,处理以下文本时:
"I come to China to travel"
"to"虽然出现两次,但由于其在所有文档中普遍存在,其TF-IDF值可能低于只出现一次的"China"。
词袋模型(Bag-of-Words)
模型概述
词袋模型将文本表示为词汇表中单词出现的频率,不考虑语法和词序,只关注"哪些词出现了"和"出现了多少次"。
应用场景
- 文本分类:将文档转化为词频向量后进行分类
- 图像处理:将图像分割为小块,提取特征后聚类形成"视觉词袋"
- 语音识别:将语音信号分段,提取MFCC特征后聚类形成"音频词袋"
实现步骤
- 构建词汇表(词袋)
- 统计每个文档中各词汇出现的频率
- 对频率进行归一化处理
- 将结果表示为特征向量
优缺点分析
优点:
- 实现简单
- 计算效率高
- 适用于大规模数据集
缺点:
- 忽略词序和语法信息
- 无法处理一词多义和多词一义问题
- 词汇表可能非常庞大
点互信息(PMI)与互信息(MI)
点互信息(PMI)
PMI用于衡量两个事件的相关性,在NLP中常用于:
- 词语相似度计算
- 情感分析
- 词语搭配发现
公式表示为:
PMI(x,y) = log(p(x,y)/(p(x)p(y)))
互信息(MI)
互信息是PMI的期望值,衡量两个随机变量的相互依赖程度:
MI(X,Y) = ΣΣ p(x,y) * log(p(x,y)/(p(x)p(y)))
在CrazyXiao项目中,互信息被用于:
- 特征选择
- 决策树中的信息增益计算
- 衡量特征与目标变量的相关性
特征选择方法比较
过滤法(Filter)
特点:
- 独立于机器学习算法
- 基于统计量筛选特征
- 计算效率高
常用方法:
- 回归问题:互信息法
- 分类问题:卡方检验
包裹法(Wrapper)
特点:
- 依赖于特定学习器
- 通过特征子集搜索找到最优组合
- 计算成本较高
搜索策略:
- 前向搜索:从空集开始逐步添加特征
- 后向搜索:从全集开始逐步删除特征
- 双向搜索:结合前向和后向搜索
- 递归剔除:反复训练并剔除最不重要特征
嵌入法(Embedding)
特点:
- 特征选择在学习器训练过程中自动完成
- 通常与模型参数相关
典型应用:
- 线性模型中的L1正则化
- 决策树特征重要性
- 神经网络中的权重分析
实际应用建议
- 小规模数据:可以尝试包裹法寻找最优特征子集
- 大规模数据:优先使用过滤法或嵌入法
- 文本数据:TF-IDF通常是基础特征,可结合互信息选择关键特征
- 高维数据:使用嵌入法中的正则化方法自动选择特征
总结
CrazyXiao机器学习项目展示了NLP中特征选择的多种技术路径。理解这些方法的原理和适用场景,对于构建高效的NLP模型至关重要。在实际应用中,建议根据数据规模、特征维度和计算资源等因素,选择合适的方法或组合使用多种方法,以达到最佳的特征选择效果。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K