OpenYurt 中基于 Cilium-CNI 实现节点池流量拓扑的实践指南
背景介绍
在边缘计算场景下,OpenYurt 作为 Kubernetes 的扩展解决方案,提供了节点池(NodePool)和服务拓扑(ServiceTopology)功能,能够实现流量的本地闭环。然而,当使用 Cilium 作为 CNI 插件时,由于其基于 eBPF 的数据平面实现,传统的流量拓扑功能可能会失效。本文将详细介绍如何在 OpenYurt 环境中适配 Cilium-CNI,实现节点池级别的流量拓扑功能。
核心问题分析
OpenYurt 原生的流量拓扑功能依赖于 kube-proxy 的 iptables 规则和 yurt-hub 的端点过滤机制。但在 Cilium 环境中,服务流量会被 eBPF 程序直接转发,绕过了传统的 iptables 规则,导致以下问题:
- 容器内访问 ClusterIP 时无法实现节点池级别的流量闭环
- Cilium 默认会获取集群所有端点(Endpoints),不受节点池限制
- 边缘节点和云端节点的流量行为不一致
解决方案设计
方案一:Cilium 边缘组件改造
参考 KubeEdge 社区的实践,我们可以将 Cilium 拆分为两个组件:
- cilium-edge:专为边缘节点设计,连接 yurt-hub 获取过滤后的端点信息
- cilium:云端组件,保持原有功能
关键改造点包括:
- 修改 KUBERNETES_SERVICE_HOST 和 KUBERNETES_SERVICE_PORT 环境变量,指向 yurt-hub
- 设置节点亲和性,确保组件部署到正确的节点类型
- 调整启动参数,确保与 yurt-hub 的兼容性
方案二:yurt-hub 数据过滤
通过配置 yurt-hub 的 ConfigMap,让 Cilium 也能受益于端点过滤功能:
apiVersion: v1
data:
servicetopology: cilium,cilium-agent
kind: ConfigMap
这种方法无需拆分 Cilium 组件,但需要确保:
- yurt-hub 已正确配置服务拓扑功能
- Cilium 组件能够正确处理过滤后的端点信息
实施步骤详解
环境准备
- 确保 Kubernetes 版本 ≥ 1.21(无需特别处理 EndpointSlice)
- 配置 kube-proxy 使用集群内设置连接 yurt-hub
- 确认 yurt-hub 和 yurt-manager 正常运行
- 创建节点池并将节点加入相应池中
测试验证
- 创建带有拓扑注解的服务:
apiVersion: v1
kind: Service
metadata:
annotations:
openyurt.io/topologyKeys: openyurt.io/nodepool
name: busy-box-svc
spec:
ports:
- port: 3000
targetPort: 3000
selector:
app: busy-box
-
使用 YurtAppSet 创建工作负载,分布在多个节点池
-
验证流量行为:
- 宿主机上 telnet ClusterIP 应实现节点池内闭环
- 容器内访问应同样遵循拓扑规则
技术原理深入
OpenYurt 流量拓扑机制
OpenYurt 通过以下组件协同工作实现流量拓扑:
- yurt-hub:过滤端点信息,只返回本节点池的端点
- kube-proxy:基于过滤后的端点生成 iptables 规则
- 节点池标签:提供拓扑域划分依据
Cilium 的特殊性
Cilium 的 eBPF 数据平面带来以下特性:
- 直接处理服务流量,绕过 kube-proxy
- 维护自己的服务映射表
- 需要特殊处理才能感知拓扑限制
最佳实践建议
- 对于混合环境:
- 云端节点使用标准 Cilium 组件
- 边缘节点使用改造后的 cilium-edge
- 监控与调试:
- 使用
cilium-dbg service list
验证服务端点 - 检查 yurt-hub 日志确保过滤正常
- 对比不同节点的端点视图
- 性能考量:
- eBPF 转发效率高于 iptables
- 端点过滤减少了边缘节点的数据量
- 需要平衡控制平面和数据平面的开销
总结
通过本文介绍的两种方案,我们成功在 OpenYurt 的 Cilium-CNI 环境中实现了节点池级别的流量拓扑功能。这种集成既保留了 Cilium 强大的网络策略和观测能力,又满足了边缘场景下流量闭环的核心需求,为构建高效、可靠的边缘计算平台提供了重要基础。
实际部署时,建议根据集群规模和性能需求选择合适的方案。对于大规模边缘集群,方案二的统一过滤机制可能更为简洁;而对于需要精细化控制的场景,方案一的组件拆分提供了更大的灵活性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









