PyTorchCV:基于PyTorch的计算机视觉深度学习框架
2025-04-18 05:42:12作者:范靓好Udolf
1. 项目介绍
PyTorchCV是一个基于PyTorch的开源计算机视觉深度学习框架。它提供了多种深度学习模型的实现,涵盖了图像分类、语义分割、目标检测、姿态估计、实例分割以及生成对抗网络等多个领域。PyTorchCV旨在帮助开发者和研究者快速搭建和训练视觉识别模型,提高研发效率。
2. 项目快速启动
环境准备
- Python 3.x
- PyTorch 1.3
安装依赖
首先,你需要安装项目所需的依赖库。可以通过以下命令安装:
pip3 install -r requirements.txt
编译扩展模块
接下来,需要编译项目中的扩展模块。执行以下命令:
cd lib/exts
sh make.sh
运行示例
以PSPNet为例,运行以下命令进行训练:
cd scripts/seg/cityscapes/
bash run_fs_pspnet_cityscapes_seg.sh train
3. 应用案例和最佳实践
图像分类
使用ResNet50进行图像分类的示例代码:
# 导入必要的库
from torchvision import models, transforms
from PIL import Image
# 加载模型
model = models.resnet50(pretrained=True)
model.eval()
# 图像预处理
input_image = Image.open("path/to/your/image.jpg")
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0)
# 推理
with torch.no_grad():
output = model(input_batch)
# 输出结果
_, index = torch.max(output, 1)
percentage = torch.nn.functional.softmax(output, dim=1)[0] * 100
print(index.item(), percentage[index.item()].item())
语义分割
使用DeepLabV3进行语义分割的示例代码:
# 导入必要的库
from torchcv.models import DeepLabV3
from PIL import Image
import torchvision.transforms as transforms
import torch
# 加载模型
model = DeepLabV3(num_classes=21, backbone='resnet101', pretrained=True)
model.eval()
# 图像预处理
input_image = Image.open("path/to/your/image.jpg")
preprocess = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0)
# 推理
with torch.no_grad():
output = model(input_batch)
# 输出结果
pred = torch.argmax(output, 1)
print(pred)
4. 典型生态项目
- SSD: Single Shot MultiBox Detector:一个用于目标检测的实时系统。
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks:一个基于深度学习的目标检测框架。
- YOLOv3: An Incremental Improvement:一个流行的目标检测和分类模型。
- Mask R-CNN:一个用于实例分割的深度学习模型。
以上是关于PyTorchCV框架的简要介绍、快速启动指南、应用案例和生态项目的概述。希望这能帮助您快速上手并有效利用这个强大的工具。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
304
2.66 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
131
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
629
222
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
459
暂无简介
Dart
593
129
React Native鸿蒙化仓库
JavaScript
230
307
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
123
576
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
360
2.51 K