推荐超高效机器学习库:HyperLearn
2024-06-22 03:31:33作者:冯爽妲Honey
HyperLearn 是一个基于 PyTorch 的优秀开源项目,旨在提供一种更快、更轻量级的替代方案,用于 Scikit-Learn 和 Statsmodels,并融入了深度学习元素。它专为大规模数据设计,内存占用减少超过 50%,部分模块运行速度提升 50% 以上,并计划支持 GPU 加速。
项目技术分析
HyperLearn 使用诸如 NumPy、Pandas、Scipy 及 LAPACK 等库,并与 NoGil Numba 配合,确保无全局解释器锁(GIL),从而实现多线程优化。此外,该项目直接在 PyTorch 架构上编写,充分利用其强大的并行计算能力。
主要优化策略:
-
尴尬的并行性:
- 利用内存共享和管理进行并行处理。
- 通过 PyTorch 和 Numba 实现 CUDA 并行化。
-
速度与内存效率翻倍:
- 通过矩阵链乘法优化矩阵运算。
- 利用 Hadamard 乘法将复杂度从 O(n^3) 降低到 O(n^2)。
- 应用 Einstein 符号简化表达式以减少内存开销。
- 根据数据结构智能地执行矩阵操作。
-
解决 Statsmodels 慢的问题:
- 优化线性模型的置信区间、预测区间、假设检验及拟合优度测试。
- 精简不必要的计算步骤。
-
深度学习融合:
- 将 PyTorch 结构引入,创建 Scikit-Learn 类似的接口。
-
代码简洁化:
- 大量使用装饰器和函数。
- 提供直观的中间层函数名。
- 便捷处理并行性问题。
-
算法的广泛选择:
- 包括矩阵完成算法、批相似性潜在 Dirichlet 分配(BS-LDA)等新颖方法。
项目及技术应用场景
HyperLearn 可广泛应用于各类机器学习任务,如分类、回归和降维。特别是对于大数据集,其高效特性在以下场景中尤为突出:
- 大规模数据建模:在处理亿级别样本和特征的数据时,内存和时间效率至关重要。
- 实时或流式数据分析:在快速响应需求和节省资源的场景下,HyperLearn 显示出巨大潜力。
- 统计推断:其提供的统计指标和假设检验对学术研究和企业决策有重要价值。
- 深度学习集成:通过 PyTorch 支持,可以直接替换现有模型,简化深度学习应用。
项目特点
- 性能卓越:内存使用和运算速度均优于传统库。
- 易于迁移:大部分接口与 Scikit-Learn 兼容,便于现有项目的无缝整合。
- 并行化:在多核处理器或 GPU 上可以轻松实现并行计算。
- 广泛兼容:支持多种算法,包括那些在其他库中不易访问的算法。
如果你正在寻找一个兼顾速度和效率,且拥有丰富功能的机器学习库,HyperLearn 绝对值得尝试。开发者 Danielhanchen 邀请你一起参与这个项目,为社区贡献你的力量!
如有任何疑问或愿意贡献力量,请联系 danielhanchen@gmail.com。让我们共同推动机器学习的边界,打造更高效的工具!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K