Seurat项目中RNA与SCT检测的merge函数行为差异解析
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R包。本文主要探讨Seurat中merge函数在处理RNA和SCT(Single Cell Transform)两种检测类型时的行为差异,以及这种差异对数据整合流程的影响。
merge函数的行为差异
当处理RNA检测类型时,merge函数会将多个Seurat对象合并为一个新对象,并为每个原始样本保留独立的counts、data和scale.data层。这意味着如果有5个样本合并,结果对象将包含5组对应的数据层。
然而,当处理SCT检测类型时,merge函数的行为则完全不同。无论合并多少个样本,结果对象都只会包含3个标准层(counts、data和scale.data),不会为每个原始样本保留独立的数据层。
数据整合的影响
这种差异对后续的数据整合流程有重要影响:
-
RNA检测类型:由于保留了样本级别的数据层,可以直接按照官方流程进行IntegrateLayers操作,与大多数教程描述的情况一致。
-
SCT检测类型:由于数据层被"压缩"合并,用户可能会担心IntegrateLayers是否能正确工作。实际上,这是SCT检测类型的预期行为。当使用SCT方法时,IntegrateLayers能够正确处理这种情况,只要在调用RPCAIntegration或CCAIntegration时指定normalization.method = "SCT"参数即可。
工作流程建议
对于从多个独立Seurat对象开始的SCT整合分析,建议遵循以下步骤:
- 使用merge函数合并所有样本对象
- 确保使用SCT作为活跃检测
- 运行IntegrateLayers时明确指定normalization.method = "SCT"
- 后续分析可以按照标准流程进行
技术背景
这种差异源于SCT检测仍然基于Seurat的v3架构,而RNA检测已经更新到v5架构。v5架构引入了更灵活的层管理功能,而v3架构则采用更简单的数据结构。开发团队正在考虑如何使这种行为对用户更加透明。
理解这种差异对于正确执行单细胞数据整合分析至关重要,特别是当工作流程涉及多种检测类型转换时。用户应当根据所使用的检测类型调整对merge函数行为的预期,并相应调整后续分析步骤。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00