首页
/ OpenXLA IREE中关于转置传播限制的技术分析

OpenXLA IREE中关于转置传播限制的技术分析

2025-06-26 13:35:04作者:殷蕙予

转置传播在元素级泛型操作中的局限性

在OpenXLA IREE编译器优化过程中,我们发现了一个关于转置传播(transpose propagation)的有趣现象。当处理具有多个输入的元素级泛型操作(elementwise generics)时,转置操作无法有效地传播到GEMM(通用矩阵乘法)操作的输入中,而在单输入的元素级泛型操作情况下,转置传播则能够正常工作。

问题现象分析

通过观察输入IR和优化后的输出,我们可以清楚地看到这一现象:

  1. 对于多输入的元素级泛型操作,转置操作无法传播到GEMM的输入
  2. 对于单输入的元素级泛型操作,输出中甚至看不到转置后的元素级操作,表明转置传播确实发生了

技术背景

转置传播是编译器优化中的一项重要技术,它通过重新排列矩阵操作的顺序来减少实际转置操作的开销。在深度学习模型中,矩阵转置是常见操作,但直接执行转置会带来额外的内存访问和计算开销。通过传播转置操作,编译器可以将转置"吸收"到相邻的操作中,从而消除显式的转置操作。

解决方案

经过深入分析,我们发现这个问题可以通过以下方式解决:

  1. 采用默认路径已经使用的方法 - 将命名操作泛化(generalize named ops)
  2. 通过元素级操作融合(elementwise op fusion)来实现转置传播

这种解决方案的优势在于它利用了编译器已有的优化基础设施,而不是引入新的特殊处理逻辑。通过将特定操作泛化为更通用的形式,编译器能够应用更广泛的优化模式。

深入技术细节

问题的根源在于多输入元素级操作与转置传播的交互方式。当存在多个输入时,转置传播需要考虑所有输入的布局一致性,这使得优化变得更加复杂。而单输入情况下,编译器可以更自由地重新安排操作顺序。

此外,在转置和GEMM操作之间存在的reshape操作也可能阻碍转置的传播过程,这进一步说明了操作之间数据布局转换的重要性。

结论

虽然这个问题在特定情况下会出现,但OpenXLA IREE的默认优化路径已经包含了有效的解决方案。通过操作泛化和后续的融合优化,编译器能够有效地处理转置传播问题。这一案例也展示了编译器优化中各种pass之间协同工作的重要性,以及为什么有时需要将特定操作转换为更通用的形式以便应用更广泛的优化。

对于开发者而言,理解这些优化背后的原理有助于更好地编写高效的模型代码,并理解编译器可能做出的优化决策。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8