在lm-evaluation-harness项目中解决PEFT模型OOM问题的经验分享
2025-05-26 22:29:17作者:范垣楠Rhoda
在使用EleutherAI的lm-evaluation-harness评估框架时,用户遇到了一个关于内存溢出的技术问题。本文将详细分析该问题的背景、现象及解决方案,帮助其他开发者避免类似陷阱。
问题背景
当用户尝试在NVIDIA A100 GPU上运行GPQA基准测试时,使用Mistral-7B模型结合PEFT(参数高效微调)适配器时出现了内存不足(OOM)的错误。有趣的是,这个错误只在特定条件下出现:当不使用--apply_chat_template参数时会发生OOM,而加上该参数后却能正常运行。
现象分析
用户最初报告的命令如下:
lm_eval --model hf --model_args pretrained=mistralai/Mistral-7B-v0.1,peft=./runs_1e-3/final_checkpoint,trust_remote_code=True,dtype=bfloat16 --tasks leaderboard_gpqa --num_fewshot 0 --batch_size 6 --apply_chat_template
关键观察点包括:
- 问题仅出现在使用PEFT适配器时,原始模型不会出现OOM
- 即使将batch_size降至1,问题依然存在
- 使用chat模板可以避免OOM,这看似不合常理,因为chat模板通常会增加输入长度
根本原因
经过深入排查,发现问题并非直接由模型或PEFT适配器引起,而是与AWS实例的内存管理机制有关。具体表现为:
- 内存泄漏假象:当停止作业时,GPU内存没有被正确释放,导致后续运行内存不足
- 环境状态残留:AWS实例在多次运行间可能保留了部分内存状态
- chat模板的间接影响:可能改变了内存分配模式,暂时规避了问题
解决方案
用户最终通过以下步骤解决了问题:
- 完全重启AWS实例:彻底清除内存状态
- 重新运行评估脚本:在干净环境中执行
- 验证不同配置:确认问题确实消失
技术要点总结
- PEFT内存管理:使用参数高效微调时,需要注意适配器可能带来的额外内存开销
- 云环境特殊性:在AWS等云平台上,实例的内存管理可能与本地环境不同
- 调试技巧:
- 当遇到看似不合逻辑的OOM时,考虑环境状态问题
- 完全重启环境是排查内存问题的有效手段
- 数据类型指定:注意
dtype=bfloat16的正确用法,确保与框架要求一致
最佳实践建议
-
在云环境中运行大型语言模型评估时,建议:
- 定期重启实例以确保内存状态干净
- 监控GPU内存使用情况
- 记录完整的环境配置信息
-
使用PEFT适配器时:
- 预留比预期更多的内存空间
- 从小batch_size开始逐步测试
- 考虑使用内存分析工具定位潜在问题
通过这次问题排查,我们再次认识到深度学习工作负载在云环境中的复杂性,以及全面记录和系统化排查的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1