在lm-evaluation-harness项目中解决PEFT模型OOM问题的经验分享
2025-05-26 14:31:11作者:范垣楠Rhoda
在使用EleutherAI的lm-evaluation-harness评估框架时,用户遇到了一个关于内存溢出的技术问题。本文将详细分析该问题的背景、现象及解决方案,帮助其他开发者避免类似陷阱。
问题背景
当用户尝试在NVIDIA A100 GPU上运行GPQA基准测试时,使用Mistral-7B模型结合PEFT(参数高效微调)适配器时出现了内存不足(OOM)的错误。有趣的是,这个错误只在特定条件下出现:当不使用--apply_chat_template参数时会发生OOM,而加上该参数后却能正常运行。
现象分析
用户最初报告的命令如下:
lm_eval --model hf --model_args pretrained=mistralai/Mistral-7B-v0.1,peft=./runs_1e-3/final_checkpoint,trust_remote_code=True,dtype=bfloat16 --tasks leaderboard_gpqa --num_fewshot 0 --batch_size 6 --apply_chat_template
关键观察点包括:
- 问题仅出现在使用PEFT适配器时,原始模型不会出现OOM
- 即使将batch_size降至1,问题依然存在
- 使用chat模板可以避免OOM,这看似不合常理,因为chat模板通常会增加输入长度
根本原因
经过深入排查,发现问题并非直接由模型或PEFT适配器引起,而是与AWS实例的内存管理机制有关。具体表现为:
- 内存泄漏假象:当停止作业时,GPU内存没有被正确释放,导致后续运行内存不足
- 环境状态残留:AWS实例在多次运行间可能保留了部分内存状态
- chat模板的间接影响:可能改变了内存分配模式,暂时规避了问题
解决方案
用户最终通过以下步骤解决了问题:
- 完全重启AWS实例:彻底清除内存状态
- 重新运行评估脚本:在干净环境中执行
- 验证不同配置:确认问题确实消失
技术要点总结
- PEFT内存管理:使用参数高效微调时,需要注意适配器可能带来的额外内存开销
- 云环境特殊性:在AWS等云平台上,实例的内存管理可能与本地环境不同
- 调试技巧:
- 当遇到看似不合逻辑的OOM时,考虑环境状态问题
- 完全重启环境是排查内存问题的有效手段
- 数据类型指定:注意
dtype=bfloat16的正确用法,确保与框架要求一致
最佳实践建议
-
在云环境中运行大型语言模型评估时,建议:
- 定期重启实例以确保内存状态干净
- 监控GPU内存使用情况
- 记录完整的环境配置信息
-
使用PEFT适配器时:
- 预留比预期更多的内存空间
- 从小batch_size开始逐步测试
- 考虑使用内存分析工具定位潜在问题
通过这次问题排查,我们再次认识到深度学习工作负载在云环境中的复杂性,以及全面记录和系统化排查的重要性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1