Fast-DDS在Apple M系列芯片上的线程亲和性设置问题分析
2025-07-01 04:43:55作者:乔或婵
问题背景
在MacOS 15.2 Arm 64平台上使用Fast-DDS 3.1.0版本时,开发者发现某些示例程序无法正常运行。经过调试发现,这与MacOS系统对线程亲和性(thread affinity)设置的支持有关。
技术细节
线程亲和性设置问题
在MacOS系统上,Fast-DDS尝试通过thread_policy_set函数设置线程亲和性时,M系列芯片会返回错误码46(KERN_NOT_SUPPORTED),表示该功能在当前平台上不被支持。这本身是一个预期行为,但问题在于后续的错误处理逻辑。
递归调用问题
当thread_policy_set调用失败后,Fast-DDS会记录错误日志。然而,这个日志记录过程本身需要创建新的线程,而线程创建过程中又会尝试设置线程亲和性,导致以下递归调用链:
configure_current_thread_affinity()调用失败- 触发
EPROSIMA_LOG_ERROR日志记录 - 日志系统需要创建新线程
- 新线程创建时再次调用
configure_current_thread_affinity() - 形成无限递归,最终导致程序卡死
解决方案分析
临时解决方案
开发者提出的临时解决方案是将错误判断条件从:
if (0 != result)
修改为:
if (KERN_SUCCESS != result && result != KERN_NOT_SUPPORTED)
这样当遇到不被支持的错误时,不会触发错误日志记录,从而避免递归调用问题。
更完善的解决方案
从架构设计角度考虑,更完善的解决方案应包括:
- 对日志系统使用的线程特殊处理,避免在这些线程上尝试设置亲和性
- 在MacOS平台上增加对M系列芯片的特定检测和处理
- 将以下线程相关函数标记为不依赖日志系统:
set_name_to_current_threadapply_thread_settings_to_current_threadconfigure_current_thread_schedulerconfigure_current_thread_affinity
平台兼容性考虑
Apple Silicon芯片(M系列)采用ARM架构,与传统x86架构在系统调用和功能支持上存在差异。Fast-DDS作为跨平台中间件,需要针对不同平台特性进行适配:
- 在MacOS平台上,应检测处理器类型和系统版本
- 对于不支持的功能,应有优雅降级处理
- 关键系统调用应考虑平台差异和兼容性
总结
这个问题揭示了在跨平台开发中需要特别注意的几个方面:
- 系统功能支持检测的重要性
- 错误处理逻辑可能引发的副作用
- 基础功能(如日志系统)的依赖关系管理
- 新硬件平台的适配考虑
对于使用Fast-DDS在Apple Silicon设备上开发的用户,建议关注官方更新或采用经过验证的临时解决方案,同时注意线程相关功能的平台差异。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217