AWS SDK Rust 中预签名 URL 因校验和头导致验证失败问题分析
2025-06-26 13:23:06作者:羿妍玫Ivan
问题背景
在 AWS SDK Rust 的 S3 客户端使用过程中,开发者在生成预签名 URL 时遇到了签名验证失败的问题。具体表现为当使用 presigned() 方法生成预签名 URL 后,实际请求时服务端返回错误,提示存在未签名的头信息 x-amz-checksum-mode。
问题现象
当开发者使用以下代码生成预签名 URL 时:
let presigning_config = PresigningConfig::builder()
.expires_in(get_expiry())
.build()
.unwrap();
let request = client
.get_object()
.bucket(bucket_name)
.key(key)
.request_payer(RequestPayer::Requester)
.presigned(presigning_config)
.await?;
生成的预签名 URL 会包含两个头信息:
x-amz-request-payerx-amz-checksum-mode
然而,在 URL 的签名部分 X-Amz-SignedHeaders 参数中,只包含了 x-amz-request-payer,而没有包含 x-amz-checksum-mode。这导致实际请求时,S3 服务端会拒绝请求并返回错误:
<Error>
<Code>AccessDenied</Code>
<Message>There were headers present in the request which were not signed</Message>
<HeadersNotSigned>x-amz-checksum-mode</HeadersNotSigned>
</Error>
技术分析
预签名 URL 的工作原理
预签名 URL 是 AWS S3 提供的一种授权机制,允许客户端生成一个有时效性的 URL,任何持有该 URL 的用户都可以执行指定的操作,而无需 AWS 凭证。其核心原理是:
- 客户端使用 AWS 凭证对请求进行签名
- 签名信息作为查询参数附加到 URL 上
- 服务端收到请求后,使用相同的算法验证签名
问题根源
经过分析,问题的根本原因在于 SDK 的内部处理顺序:
PreSigningInterceptor拦截器执行签名操作HttpResponseChecksumDecorator随后添加了x-amz-checksum-mode头
这种处理顺序导致校验和头被添加到了已签名的请求之后,从而破坏了签名的完整性。正确的处理顺序应该是所有需要签名的头信息都必须在签名前添加完毕。
解决方案
临时解决方案
在官方修复发布前,开发者可以采用以下临时解决方案:
- 设置校验和计算模式为
WhenRequired:
let s3_config = Config::builder()
.request_checksum_calculation(RequestChecksumCalculation::WhenRequired)
.build();
let client = aws_sdk_s3::Client::from_conf(s3_config);
- 手动移除校验和头:
let mut request = client.get_object()...presigned().await?;
request.headers_mut().remove("x-amz-checksum-mode");
官方修复
AWS SDK Rust 团队已经修复了这个问题,修复方案主要调整了内部处理顺序,确保所有需要签名的头信息都在签名前添加。该修复已包含在 1.75.0 版本中发布。
最佳实践建议
- 当使用预签名 URL 时,应当检查生成的 URL 中
X-Amz-SignedHeaders参数是否包含了所有必要的头信息 - 对于生产环境,建议始终使用最新版本的 SDK
- 在测试预签名 URL 时,应当模拟真实客户端的请求方式,包括所有必要的头信息
总结
这个问题展示了 AWS 签名机制对请求完整性的严格要求。任何在签名后对请求的修改都会导致验证失败。开发者在使用预签名 URL 时应当注意请求的最终形态是否与签名时的形态一致。AWS SDK Rust 团队对此问题的快速响应也体现了开源社区的优势,开发者遇到类似问题时可以及时升级 SDK 或采用临时解决方案。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
289
2.6 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
226
305
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
181
暂无简介
Dart
576
127
Ascend Extension for PyTorch
Python
115
147
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
450
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
76
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
154
58