MolCRAFT项目解析:基于连续参数空间的结构化药物设计
2025-07-09 06:48:39作者:钟日瑜
项目概述
MolCRAFT是一个创新的药物设计框架,其核心思想是在连续参数空间中进行基于结构的药物设计(Structure-Based Drug Design, SBDD)。该项目在ICML 2024上发表,提出了一种全新的分子生成方法,突破了传统离散分子表示的限制。
技术原理
MolCRAFT基于贝叶斯流网络(Bayesian Flow Networks)构建,这是一种统一的三维分子生成建模方法。与传统的离散分子生成方法不同,MolCRAFT直接在连续空间中操作,具有以下技术特点:
- 连续参数空间建模:直接在三维坐标和化学特征空间中进行操作,避免了离散化带来的信息损失
- 结构感知设计:能够充分考虑蛋白质口袋的三维结构信息
- 端到端训练:整个系统可以端到端地进行训练和优化
环境配置
Docker部署(推荐)
对于拥有NVIDIA GPU的Linux服务器,推荐使用Docker进行部署:
- 确保系统已安装支持
nvidia-container-runtime的Docker - 进入项目docker目录执行简单命令即可完成部署
cd ./docker
make
数据准备
项目使用了与TargetDiff相同的数据集,主要包括:
- 训练数据文件:
crossdocked_v1.1_rmsd1.0_pocket10_processed_final.lmdb - 数据分割文件:
crossdocked_pocket10_pose_split.pt - 测试集数据:需要下载并解压
test_set.zip
模型训练与评估
训练流程
执行训练命令的基本格式如下:
python train_bfn.py --exp_name ${EXP_NAME} --revision ${REVISION}
关键训练参数说明:
sigma1_coord:坐标噪声的标准差beta1:噪声调度参数lr:学习率time_emb_dim:时间嵌入维度destination_prediction:是否启用目标预测
模型评估
评估预训练模型可以使用以下命令:
python train_bfn.py --test_only --no_wandb --ckpt_path ./checkpoints/${CKPT_NAME}
评估过程会自动计算多种指标,包括结合亲和力(Vina Score)和分子属性(QED, SA等)。
分子生成与应用
从测试集口袋生成分子
python train_bfn.py --config_file configs/default.yaml --exp_name ${EXP_NAME} \
--revision ${REVISION} --test_only --num_samples ${NUM_MOLS_PER_POCKET} --sample_steps 100
生成的分子会保存在指定目录中,每个测试口袋默认生成10个分子。
从PDB文件生成分子
对于任意蛋白质PDB文件,可以使用参考配体来定义口袋区域:
python sample_for_pocket.py ${PDB_PATH} ${SDF_PATH}
技术优势与应用前景
MolCRAFT在药物设计领域具有显著优势:
- 生成质量高:连续空间建模能产生更合理的分子构象
- 计算效率优:相比传统方法,在保持精度的同时提高了生成速度
- 应用范围广:可用于虚拟筛选、先导化合物优化等多种场景
该项目为基于结构的药物设计提供了新的思路和工具,有望加速新药发现过程。研究人员可以基于此框架开发更高效的药物设计算法,医药企业也可将其整合到药物研发流程中。
引用信息
如需在学术研究中使用MolCRAFT,请引用原始论文。该项目由多位计算化学和机器学习专家共同完成,代表了当前AI辅助药物设计的前沿水平。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.89 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
261
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1