InsightFace-v2 项目使用教程
2024-09-26 11:58:30作者:廉皓灿Ida
1. 项目目录结构及介绍
InsightFace-v2/
├── data/
│ ├── images/
│ ├── megaface/
│ ├── mtcnn/
│ ├── retinaface/
│ └── test/
├── align_faces.py
├── config.py
├── data_gen.py
├── demo.py
├── extract.py
├── focal_loss.py
├── image_aug.py
├── lfw_eval.py
├── megaface.py
├── models/
├── optimizer.py
├── pre_process.py
├── requirements.txt
├── train.py
└── utils.py
目录结构介绍
-
data/: 存放数据集的目录,包括训练数据和测试数据。
- images/: 存放图像数据。
- megaface/: 存放 MegaFace 数据集。
- mtcnn/: 存放 MTCNN 相关文件。
- retinaface/: 存放 RetinaFace 相关文件。
- test/: 存放测试数据。
-
align_faces.py: 用于人脸对齐的脚本。
-
config.py: 项目的配置文件。
-
data_gen.py: 数据生成脚本。
-
demo.py: 演示脚本,用于展示模型效果。
-
extract.py: 数据提取脚本。
-
focal_loss.py: 实现 Focal Loss 的脚本。
-
image_aug.py: 图像增强脚本。
-
lfw_eval.py: LFW 数据集评估脚本。
-
megaface.py: MegaFace 数据集处理脚本。
-
models/: 存放模型定义的目录。
-
optimizer.py: 优化器定义脚本。
-
pre_process.py: 数据预处理脚本。
-
requirements.txt: 项目依赖文件。
-
train.py: 训练脚本。
-
utils.py: 工具函数脚本。
2. 项目启动文件介绍
train.py
train.py 是项目的启动文件,用于训练人脸识别模型。该脚本会加载配置文件中的参数,初始化模型、优化器和损失函数,然后开始训练过程。
使用方法
python train.py
demo.py
demo.py 是演示脚本,用于展示训练好的模型在图像上的识别效果。该脚本会加载预训练模型,并对输入图像进行人脸识别。
使用方法
python demo.py --image_path path/to/image.jpg
3. 项目的配置文件介绍
config.py
config.py 是项目的配置文件,包含了训练过程中所需的各种参数设置。以下是配置文件中的一些关键参数:
# 数据路径
DATA_DIR = 'data/'
# 模型参数
MODEL_NAME = 'resnet101'
NUM_CLASSES = 85164
# 训练参数
BATCH_SIZE = 64
EPOCHS = 50
LEARNING_RATE = 0.001
# 其他参数
USE_CUDA = True
LOG_DIR = 'runs/'
配置文件说明
- DATA_DIR: 数据集的根目录。
- MODEL_NAME: 使用的模型名称,如
resnet101。 - NUM_CLASSES: 分类的类别数,通常为人脸识别中的身份数量。
- BATCH_SIZE: 训练时的批量大小。
- EPOCHS: 训练的总轮数。
- LEARNING_RATE: 学习率。
- USE_CUDA: 是否使用 CUDA 进行加速。
- LOG_DIR: 日志文件的保存路径。
通过修改 config.py 中的参数,可以调整训练过程中的各种设置,以适应不同的需求和环境。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
终极Emoji表情配置指南:从config.yaml到一键部署全流程如何用Aider AI助手快速开发游戏:从Pong到2048的完整指南从崩溃到重生:Anki参数重置功能深度优化方案 RuoYi-Cloud-Plus 微服务通用权限管理系统技术文档 GoldenLayout 布局配置完全指南 Tencent Cloud IM Server SDK Java 技术文档 解决JumpServer v4.10.1版本Windows发布机部署失败问题 最完整2025版!SeedVR2模型家族(3B/7B)选型与性能优化指南2025微信机器人新范式:从消息自动回复到智能助理的进化之路3分钟搞定!团子翻译器接入Gemini模型超详细指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350