Apache Jena 使用详解
一、安装指南
Apache Jena 是一款用于处理 RDF 数据的开源 Java 框架。在开始使用前,您需要确保已经安装了 Java JDK 1.8 和 Apache Maven。
- 安装 Java JDK 1.8,请遵循官方安装指南。
- 安装 Apache Maven,您可以通过访问 Apache Maven 官网 下载最新版本的 Maven。下载后,解压至指定目录,并配置环境变量。
安装完成后,验证 Maven 是否安装成功,打开命令行输入以下命令:
mvn -version
- 克隆或下载 Apache Jena 示例项目:
git clone https://github.com/apache/jena.git
- 进入项目目录,执行以下命令下载所有必要的依赖:
cd jena-example
mvn package
- 如果您使用的是 Eclipse,建议设置 M2_REPO 环境变量:
mvn -Declipse.workspace=/path/to/your/workspace eclipse:add-maven-repo
-
将项目导入 Eclipse:
- 打开 Eclipse,选择 "File" > "Import..." > "Existing Projects into Workspace",选择项目目录。
-
生成 Eclipse 项目文件:
mvn eclipse:eclipse
- 复制依赖项到指定目录:
mvn dependency:copy-dependencies
- 查看项目依赖树:
mvn dependency:tree
二、项目使用说明
Apache Jena 示例项目包含了一系列关于如何使用 Apache Jena 处理 RDF 数据的示例代码。以下是一些示例的分类及简介:
-
ExampleIO_NN.java:展示如何使用 Apache Jena 读取(解析)或写入(序列化)各种格式的 RDF 数据,如 RDF/XML、N3、Turtle、N-Triples 等。
-
ExampleAPI_NN.java:展示如何使用 Jena Model API 创建或操作 RDF 数据。
-
ExampleARQ_NN.java:展示如何运行 SPARQL 查询并遍历查询结果。
-
ExampleLARQ_NN.java:展示如何使用 LARQ(Lucene + ARQ)进行全文搜索。
-
ExampleTDB_NN.java:展示如何将数据加载到 TDB(Apache Jena 的本地存储)并运行 SPARQL 查询。
-
ExampleONT_NN.java 和 ExampleINF_NN.java:展示如何处理本体和推理。
三、项目 API 使用文档
Apache Jena 提供了丰富的 API 用于处理 RDF 数据。以下是一些主要 API 的简单说明:
-
Model:代表一个 RDF 数据模型,可用于创建和操作 RDF 数据。
-
RDFNode:代表 RDF 数据中的一个节点,可以是资源、文字或空白节点。
-
Resource:代表 RDF 数据中的一个资源。
-
Literal:代表 RDF 数据中的一个文字。
-
StmtIterator:用于遍历 RDF 数据中的语句。
-
Query:代表一个 SPARQL 查询。
-
QueryExecution:用于执行 SPARQL 查询。
-
ResultSet:代表 SPARQL 查询的结果。
更多详细 API 文档,请参考 Apache Jena 官方文档。
四、项目安装方式
Apache Jena 示例项目的安装方式已在上述 "安装指南" 中详细说明。您可以通过 Maven 命令行工具安装项目依赖并生成 Eclipse 项目文件。具体步骤如下:
- 下载并解压 Apache Maven。
- 克隆或下载 Apache Jena 示例项目。
- 进入项目目录,执行
mvn package命令。 - 设置 M2_REPO 环境变量(针对 Eclipse 用户)。
- 将项目导入 Eclipse。
- 生成 Eclipse 项目文件(可选)。
- 复制依赖项到指定目录(可选)。
- 查看项目依赖树(可选)。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01