UMAP与PyTorch并行计算冲突问题分析
2025-05-29 14:54:51作者:秋阔奎Evelyn
问题现象
在使用UMAP降维工具处理PyTorch生成的嵌入向量时,发现一个奇怪的运行崩溃现象。当同时导入umap-learn和PyTorch库后,UMAP在计算过程中会意外崩溃,仅显示"OMP: Info #273"警告信息后便无任何错误提示地退出。
环境配置
该问题出现在以下环境中:
- 操作系统:macOS (Intel处理器)
- Python版本:3.10.13
- PyTorch版本:2.2.0
- umap-learn版本:0.5.5
问题重现
典型的问题重现代码如下:
import umap
import torch
def get_projection(vector):
return umap.UMAP(metric="euclidean", n_components=2, verbose=True).fit_transform(
vector
)
embeddings = torch.load("./embeddings.pt").numpy()
get_projection(embeddings) # 此处会崩溃
临时解决方案
通过测试发现,如果在导入PyTorch之前先运行一次UMAP计算,后续的计算就能正常完成:
import umap
import numpy as np
# 先运行一次UMAP
np_easy = np.random.rand(10, 10)
umap.UMAP().fit_transform(np_easy)
# 再导入PyTorch并进行计算
import torch
embeddings = torch.load("./embeddings.pt").numpy()
umap.UMAP().fit_transform(embeddings) # 此时能正常运行
根本原因分析
经过深入排查,发现问题与并行计算线程控制有关。UMAP底层依赖Numba进行加速,而PyTorch也有自己的并行计算机制。当两者同时存在时,可能会在线程管理上产生冲突。
通过测试pynndescent库(UMAP使用的最近邻搜索库)发现:
- 直接使用
NNDescent(vector)
会重现相同崩溃 - 设置
n_jobs=1
(单线程模式)后问题消失
最终解决方案
对于遇到此问题的用户,推荐以下解决方案:
- 强制单线程模式:在UMAP初始化时设置
n_jobs=1
umap.UMAP(n_jobs=1).fit_transform(data)
- 调整Numba线程设置:通过环境变量控制Numba的线程行为
import os
os.environ['NUMBA_NUM_THREADS'] = '1' # 限制Numba使用单线程
- 升级依赖库:检查是否有更新的Numba或PyTorch版本解决了该问题
技术背景
这个问题涉及到几个底层技术:
- OpenMP:用于管理并行计算的API,UMAP和PyTorch都使用它
- Numba:Python的JIT编译器,UMAP使用它来加速计算
- 线程冲突:当多个库同时尝试管理线程时可能出现不可预测行为
在Mac系统上,这类问题可能更为常见,因为其线程管理与Linux/Windows有所不同。
总结
UMAP与PyTorch的并行计算冲突是一个典型的库间兼容性问题。通过限制线程数量或调整初始化顺序可以暂时解决。对于生产环境,建议进行更全面的压力测试,并关注相关库的更新日志,以期待官方修复此问题。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8