PolyMC中Forge 1.12.2模组显示为"Example Mod"的解决方案
在PolyMC启动器中添加Forge 1.12.2模组时,有时会出现模组名称被错误显示为"Example Mod"的情况。这种现象通常是由于PolyMC读取模组元数据的方式与Forge 1.12.2默认配置不匹配导致的。
问题根源分析
Forge 1.12.2版本及更早的模组通常使用mcmod.info文件来存储模组的元数据信息,包括模组名称、版本、作者等。然而,PolyMC启动器在解析模组信息时,优先查找的是META-INF/mods.toml文件,这是Forge 1.13+版本开始采用的新的元数据格式。
当PolyMC在模组jar包中找不到mods.toml文件时,它会回退到显示默认的"Example Mod"名称,而不是从mcmod.info中读取正确的信息。这种设计决策可能是为了与现代Forge版本保持兼容,但导致了与旧版本模组的兼容性问题。
解决方案
要解决这个问题,开发者或用户需要采取以下步骤之一:
-
添加mods.toml文件:
- 在模组的META-INF目录下创建一个mods.toml文件
- 文件内容应包含基本的模组信息,格式如下:
modLoader="javafml" loaderVersion="[14.23,)" license="All Rights Reserved" [[mods]] modId="yourmodid" version="1.0" displayName="Your Mod Name" description=''' Your mod description here '''
-
保留双重元数据:
- 同时保留mcmod.info和mods.toml文件
- 这样可以确保模组在PolyMC和其他启动器中都能正确显示
-
更新构建脚本:
- 如果使用Gradle构建系统,可以在build.gradle中添加自动生成mods.toml的任务
- 这样可以确保每次构建时都包含正确的元数据文件
技术背景
Forge模组系统在1.13版本进行了重大改革,其中一项变化就是将模组元数据从JSON格式(mcmod.info)迁移到了TOML格式(mods.toml)。TOML格式更加结构化,支持注释,且更易于解析。PolyMC选择优先支持新格式是为了与现代模组开发保持同步,但这也带来了与旧版本模组的兼容性挑战。
对于模组开发者而言,最佳实践是在维护旧版本模组时添加mods.toml文件,这样可以确保模组在各种启动器中都能正确识别。对于普通用户来说,如果遇到这个问题,可以联系模组作者建议添加支持,或者自行解压模组jar包添加必要的元数据文件。
通过理解PolyMC的元数据读取机制和Forge模组的发展历程,用户可以更好地解决这类兼容性问题,确保模组在启动器中正确显示和运行。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00