PolyMC中Forge 1.12.2模组显示为"Example Mod"的解决方案
在PolyMC启动器中添加Forge 1.12.2模组时,有时会出现模组名称被错误显示为"Example Mod"的情况。这种现象通常是由于PolyMC读取模组元数据的方式与Forge 1.12.2默认配置不匹配导致的。
问题根源分析
Forge 1.12.2版本及更早的模组通常使用mcmod.info文件来存储模组的元数据信息,包括模组名称、版本、作者等。然而,PolyMC启动器在解析模组信息时,优先查找的是META-INF/mods.toml文件,这是Forge 1.13+版本开始采用的新的元数据格式。
当PolyMC在模组jar包中找不到mods.toml文件时,它会回退到显示默认的"Example Mod"名称,而不是从mcmod.info中读取正确的信息。这种设计决策可能是为了与现代Forge版本保持兼容,但导致了与旧版本模组的兼容性问题。
解决方案
要解决这个问题,开发者或用户需要采取以下步骤之一:
-
添加mods.toml文件:
- 在模组的META-INF目录下创建一个mods.toml文件
- 文件内容应包含基本的模组信息,格式如下:
modLoader="javafml" loaderVersion="[14.23,)" license="All Rights Reserved" [[mods]] modId="yourmodid" version="1.0" displayName="Your Mod Name" description=''' Your mod description here '''
-
保留双重元数据:
- 同时保留mcmod.info和mods.toml文件
- 这样可以确保模组在PolyMC和其他启动器中都能正确显示
-
更新构建脚本:
- 如果使用Gradle构建系统,可以在build.gradle中添加自动生成mods.toml的任务
- 这样可以确保每次构建时都包含正确的元数据文件
技术背景
Forge模组系统在1.13版本进行了重大改革,其中一项变化就是将模组元数据从JSON格式(mcmod.info)迁移到了TOML格式(mods.toml)。TOML格式更加结构化,支持注释,且更易于解析。PolyMC选择优先支持新格式是为了与现代模组开发保持同步,但这也带来了与旧版本模组的兼容性挑战。
对于模组开发者而言,最佳实践是在维护旧版本模组时添加mods.toml文件,这样可以确保模组在各种启动器中都能正确识别。对于普通用户来说,如果遇到这个问题,可以联系模组作者建议添加支持,或者自行解压模组jar包添加必要的元数据文件。
通过理解PolyMC的元数据读取机制和Forge模组的发展历程,用户可以更好地解决这类兼容性问题,确保模组在启动器中正确显示和运行。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00