Shaka Player中基于数组的DRM稳健性配置详解
概述
在Shaka Player的最新版本中,DRM(数字版权管理)配置方式进行了重要更新,特别是关于视频和音频稳健性(Robustness)的设置。传统的单一字符串配置方式已被弃用,取而代之的是基于数组的配置方法。这一变化为开发者提供了更灵活、更强大的DRM配置能力。
DRM稳健性配置的演进
早期版本的Shaka Player中,开发者只能为每个DRM系统指定单一的稳健性级别。例如:
drm: {
advanced: {
'com.widevine.alpha': {
videoRobustness: 'SW_SECURE_DECODE',
audioRobustness: 'SW_SECURE_DECODE'
}
}
}
这种配置方式存在明显局限性,当指定的稳健性级别不被支持时,播放可能会失败。新版本引入的数组配置方式允许开发者指定多个备选稳健性级别,显著提高了兼容性和灵活性。
数组配置的工作原理
新的数组配置方式允许开发者按照优先级顺序列出多个稳健性级别。Shaka Player会按顺序尝试这些级别,直到找到第一个被支持的选项。这种机制类似于CSS中的字体回退策略。
配置示例:
player.configure({
drm: {
advanced: {
'com.widevine.alpha': {
videoRobustness: ['HW_SECURE_ALL', 'SW_SECURE_DECODE'],
audioRobustness: ['HW_SECURE_ALL', 'SW_SECURE_DECODE']
},
'com.microsoft.playready.recommendation': {
videoRobustness: ['3000', '2000'],
audioRobustness: ['3000', '2000']
}
}
}
});
在这个示例中,对于Widevine DRM系统,Shaka Player会首先尝试硬件级安全(HW_SECURE_ALL),如果不支持则回退到软件级安全(SW_SECURE_DECODE)。对于PlayReady系统,则会依次尝试3000和2000级别的稳健性。
多DRM系统的协同工作
当配置了多个DRM系统时(如Widevine和PlayReady),Shaka Player会按照preferredKeySystems中指定的顺序尝试各个系统。对于每个系统,又会按照数组中的顺序尝试不同的稳健性级别。
这种分层尝试机制确保了在各种设备和浏览器上获得最佳的DRM支持:
- 首先尝试首选的DRM系统
- 对于每个DRM系统,按顺序尝试稳健性级别
- 如果所有稳健性级别都不支持,则尝试下一个DRM系统
实际应用建议
- 测试覆盖:在实际部署前,务必在各种目标设备和浏览器上测试所有配置组合
- 性能考量:较高的稳健性级别(如硬件级)可能提供更好的安全性,但可能影响性能或兼容性
- 回退策略:合理设置稳健性级别的顺序,确保在不支持高级别时能优雅降级
- 特定平台配置:不同DRM系统使用不同的稳健性标识(如Widevine使用字符串,PlayReady使用数字)
常见稳健性级别说明
Widevine
HW_SECURE_ALL:最高级别的硬件安全SW_SECURE_DECODE:软件级安全解码SW_SECURE_CRYPTO:基本软件加密
PlayReady
3000:最高保护级别2000:中等保护级别150:基本保护级别
总结
Shaka Player的数组式DRM稳健性配置为开发者提供了更精细的控制能力和更好的兼容性保障。通过合理配置多个备选级别,可以显著提高内容在各种环境下的可播放性。开发者应当根据实际需求和安全要求,设计适当的稳健性级别顺序,并在各种环境下充分测试以确保配置的有效性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00