DeepLabCut多动物姿态估计训练中的权重掩码问题解析
2025-06-09 12:03:17作者:姚月梅Lane
问题背景
在DeepLabCut 3.0.0rc4版本的多动物姿态估计模型训练过程中,研究人员发现了一个影响模型训练效果的关键问题:权重掩码(weights mask)在训练过程中被意外地全部置零。这一问题直接导致模型无法正常学习,输出结果始终保持在0.5左右的初始值,无法形成有效的关键点热图。
问题现象分析
在模型训练过程中,权重掩码本应控制不同区域对损失函数的贡献程度。理想情况下,对于标注的关键点位置应给予较高权重,而未标注区域则权重较低。然而,实际观察发现:
- 在
heatmap_targets.py
文件的权重生成代码段执行前,权重张量初始为全1矩阵 - 经过关键点循环处理后,权重张量被异常地全部置零
- 这种异常导致模型梯度无法正常回传,训练过程失效
技术原理探究
问题的根源在于权重掩码生成逻辑中的循环处理方式。在多动物场景下,每个关键点组(group_keypoints)是一个形状为(10, 3)的数组,其中10代表最大动物数量。当处理这些数据时:
- 代码会遍历每个动物的关键点信息
- 只要遇到任何一个关键点的可见性标志为-1(表示未定义),就会将该热图通道的权重全部置零
- 在实际数据中,由于最大动物数通常大于实际动物数,未使用的槽位会用(-1,-1,-1)填充
- 这种设计导致几乎所有热图通道的权重最终都被置零
解决方案演进
临时解决方案
研究人员提出了一个临时修改方案:仅当某个身体部位在所有动物中都未被标注时,才将该部位的权重掩码置零。具体实现是在遍历单个关键点前,先检查整个关键点组的可见性标志:
if not np.any(group_keypoints[:, 2] > 0):
weights[b, heatmap_idx] = 0.0
这种修改保留了有效标注部位的训练信号,使模型能够正常学习。
官方修复方案
DeepLabCut团队在后续版本中提供了官方修复方案,主要改进包括:
- 引入了
gradient_masking
标志控制是否对不可见关键点应用背景权重 - 区分了关键点不可见(visibility=0)和未定义(visibility=-1)两种情况
- 默认情况下不屏蔽不可见关键点的梯度,仅对未定义关键点进行完全屏蔽
技术启示
这一问题的解决过程为深度学习模型训练中的掩码设计提供了重要启示:
- 多实例处理:在多实例场景下,需要谨慎设计循环逻辑,避免单个实例影响整体
- 可见性标志:关键点可见性标志应有明确语义区分,不可见和未定义应区别对待
- 梯度控制:权重掩码的设计直接影响模型学习效果,需进行充分验证
实践建议
对于使用DeepLabCut进行多动物姿态估计的研究人员,建议:
- 升级到已修复该问题的版本
- 检查训练过程中的权重掩码输出,确保其符合预期
- 对于自定义数据集,明确关键点可见性标志的使用规范
- 在模型评估阶段,注意检查输出热图的质量和分布特征
通过理解并正确应用这些技术要点,研究人员可以更有效地利用DeepLabCut进行复杂场景下的多动物姿态分析。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0120AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287