DeepLabCut多动物姿态估计训练中的权重掩码问题解析
2025-06-09 09:47:58作者:姚月梅Lane
问题背景
在DeepLabCut 3.0.0rc4版本的多动物姿态估计模型训练过程中,研究人员发现了一个影响模型训练效果的关键问题:权重掩码(weights mask)在训练过程中被意外地全部置零。这一问题直接导致模型无法正常学习,输出结果始终保持在0.5左右的初始值,无法形成有效的关键点热图。
问题现象分析
在模型训练过程中,权重掩码本应控制不同区域对损失函数的贡献程度。理想情况下,对于标注的关键点位置应给予较高权重,而未标注区域则权重较低。然而,实际观察发现:
- 在
heatmap_targets.py文件的权重生成代码段执行前,权重张量初始为全1矩阵 - 经过关键点循环处理后,权重张量被异常地全部置零
- 这种异常导致模型梯度无法正常回传,训练过程失效
技术原理探究
问题的根源在于权重掩码生成逻辑中的循环处理方式。在多动物场景下,每个关键点组(group_keypoints)是一个形状为(10, 3)的数组,其中10代表最大动物数量。当处理这些数据时:
- 代码会遍历每个动物的关键点信息
- 只要遇到任何一个关键点的可见性标志为-1(表示未定义),就会将该热图通道的权重全部置零
- 在实际数据中,由于最大动物数通常大于实际动物数,未使用的槽位会用(-1,-1,-1)填充
- 这种设计导致几乎所有热图通道的权重最终都被置零
解决方案演进
临时解决方案
研究人员提出了一个临时修改方案:仅当某个身体部位在所有动物中都未被标注时,才将该部位的权重掩码置零。具体实现是在遍历单个关键点前,先检查整个关键点组的可见性标志:
if not np.any(group_keypoints[:, 2] > 0):
weights[b, heatmap_idx] = 0.0
这种修改保留了有效标注部位的训练信号,使模型能够正常学习。
官方修复方案
DeepLabCut团队在后续版本中提供了官方修复方案,主要改进包括:
- 引入了
gradient_masking标志控制是否对不可见关键点应用背景权重 - 区分了关键点不可见(visibility=0)和未定义(visibility=-1)两种情况
- 默认情况下不屏蔽不可见关键点的梯度,仅对未定义关键点进行完全屏蔽
技术启示
这一问题的解决过程为深度学习模型训练中的掩码设计提供了重要启示:
- 多实例处理:在多实例场景下,需要谨慎设计循环逻辑,避免单个实例影响整体
- 可见性标志:关键点可见性标志应有明确语义区分,不可见和未定义应区别对待
- 梯度控制:权重掩码的设计直接影响模型学习效果,需进行充分验证
实践建议
对于使用DeepLabCut进行多动物姿态估计的研究人员,建议:
- 升级到已修复该问题的版本
- 检查训练过程中的权重掩码输出,确保其符合预期
- 对于自定义数据集,明确关键点可见性标志的使用规范
- 在模型评估阶段,注意检查输出热图的质量和分布特征
通过理解并正确应用这些技术要点,研究人员可以更有效地利用DeepLabCut进行复杂场景下的多动物姿态分析。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869