AiATrack 开源项目使用教程
2024-09-26 08:29:09作者:农烁颖Land
1. 项目介绍
AiATrack 是一个基于 PyTorch 的视觉跟踪框架,由 Shenyuan Gao、Chunluan Zhou、Chao Ma、Xinggang Wang 和 Junsong Yuan 在 ECCV 2022 上提出。该项目的主要贡献是提出了一个名为“Attention in Attention”(AiA)的模块,该模块通过增强适当的关联并抑制错误的关联来改进视觉跟踪中的注意力机制。AiATrack 框架通过引入高效的特征重用和目标-背景嵌入,进一步简化了 Transformer 跟踪框架。
2. 项目快速启动
环境准备
AiATrack 的实验环境基于 Ubuntu 18.04 和 CUDA 10.1。以下是快速启动的步骤:
-
克隆项目仓库:
git clone https://github.com/Little-Podi/AiATrack.git cd AiATrack -
下载数据集: 下载训练数据集(LaSOT、TrackingNet、GOT-10k、COCO2017)和测试数据集(NfS、OTB、UAV123)并组织目录结构如下:
--LaSOT/ |--airplane |--zebra --TrackingNet/ |--TRAIN_0 |--TEST --GOT10k/ |--test |--train |--val --COCO/ |--annotations |--images --NFS30/ |--anno |--sequences --OTB100/ |--Basketball |--Woman --UAV123/ |--anno |--data_seq -
配置路径: 编辑
lib/test/evaluation/local.py和lib/train/adim/local.py中的PATH变量为正确的绝对路径。 -
安装依赖:
conda create --name aiatrack python=3.6 conda activate aiatrack sudo apt-get install ninja-build sudo apt-get install libturbojpeg bash install.sh
训练模型
使用多个 GPU 进行训练:
python tracking/train.py --mode multiple --nproc 8
模型评估
在大型数据集上进行评估:
python tracking/test.py --dataset lasot
python tracking/test.py --dataset lasot_ext
在小型数据集上进行评估:
python tracking/test.py --dataset nfs
python tracking/test.py --dataset otb
python tracking/test.py --dataset uav
3. 应用案例和最佳实践
AiATrack 在多个视觉跟踪基准测试中表现出色,包括 LaSOT、TrackingNet、GOT-10k、NfS30、OTB100、UAV123 和 VOT2020。以下是一些应用案例:
- 自动驾驶:在自动驾驶系统中,AiATrack 可以用于实时跟踪车辆和行人,提高系统的安全性和可靠性。
- 视频监控:在视频监控系统中,AiATrack 可以用于跟踪可疑目标,帮助安保人员快速响应。
- 体育分析:在体育赛事分析中,AiATrack 可以用于跟踪运动员的运动轨迹,提供详细的运动数据分析。
4. 典型生态项目
AiATrack 的实现基于以下开源项目,这些项目在视觉跟踪领域也有重要贡献:
- STARK:一个基于 Transformer 的视觉跟踪框架,提供了强大的特征提取和目标跟踪能力。
- PyTracking:一个通用的视觉跟踪库,支持多种跟踪算法和数据集。
- DETR:一个基于 Transformer 的目标检测框架,提供了高效的特征提取和目标检测能力。
- PreciseRoIPooling:一个精确的 RoI Pooling 实现,提高了目标检测和跟踪的精度。
通过结合这些生态项目,AiATrack 可以进一步提升其在视觉跟踪任务中的表现。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135