探索三维世界的革新之路——GaussianFormer:以高斯分布描绘视觉基三维语义占用预测的新篇章
在当今技术日新月异的时代背景下,对三维空间的精准感知与理解已经成为自动驾驶、机器人导航以及虚拟现实等领域的核心议题之一。近日,一款名为“GaussianFormer”的开源项目横空出世,旨在通过创新性地运用高斯混合模型来提升视觉基三维场景解析的效率与准确度。
项目简介
GaussianFormer,由黄元辉、郑文钊等人领导开发,是基于高斯分布理论的一种新型三维语义占用预测框架。相较于传统的密集网格表示法,它提出了一种更加高效的对象中心化3D语义高斯表征方案,不仅能够精细描述三维场景结构,还大幅度降低了计算资源需求,堪称一项重大突破!
技术分析
GaussianFormer的核心在于其利用高斯混合模型的通用逼近特性,构建了一个对象为中心的3D语义高斯表示法,这有效地避免了使用密集网格所带来的计算冗余问题。该架构包含一个名为"GaussianFormer"的模型,集成了稀疏卷积和交叉注意力机制,用于高效转换二维图像为三维高斯表示;此外,设计有Gaussian-to-Voxel Splatting模块,借助CUDA实现高速的3D占用密度生成过程。实验证明,在保持相近性能的前提下,GaussianFormer相比现有方法减少了高达75.2%-82.2%的内存消耗。
应用场景与技术展现
无论是复杂的驾驶环境下的障碍物识别,还是机器人领域中室内布局的理解与规划,GaussianFormer都能以其高效的物体表示和占用预测功能发挥作用。下图展示了GaussianFormer在不同情境中的应用实例:
结合直观的色彩编码解释,可以清晰了解到每一项图例所代表的含义:
通过与现有技术的比较,可以看出GaussianFormer的优势所在:
特点概览
-
高效表达:采用对象中心化的3D语义高斯表示,大幅减少内存消耗。
-
高性能转化:从二维图像到三维高斯分布的有效转换,提升了整体处理速度。
-
低资源要求:相比传统方法,显著降低运算所需硬件资源,更易于广泛应用。
-
广泛适用性:适用于自动驾驶、机器人技术、虚拟现实等多个领域,潜力巨大。
让我们共同期待GaussianFormer未来的发展,相信这个项目将为三维空间理解和智能系统的进步带来新的可能!
最后,如果您对这一项目感兴趣并认为它有所帮助,请不要忘记引用相关论文,支持作者的研究工作:
@article{huang2024gaussian,
title={GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction},
author={Huang, Yuanhui and Zheng, Wenzhao and Zhang, Yunpeng and Zhou, Jie and Lu, Jiwen},
journal={arXiv preprint arXiv:2405.17429},
year={2024}
}
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









