探索三维世界的革新之路——GaussianFormer:以高斯分布描绘视觉基三维语义占用预测的新篇章
在当今技术日新月异的时代背景下,对三维空间的精准感知与理解已经成为自动驾驶、机器人导航以及虚拟现实等领域的核心议题之一。近日,一款名为“GaussianFormer”的开源项目横空出世,旨在通过创新性地运用高斯混合模型来提升视觉基三维场景解析的效率与准确度。
项目简介
GaussianFormer,由黄元辉、郑文钊等人领导开发,是基于高斯分布理论的一种新型三维语义占用预测框架。相较于传统的密集网格表示法,它提出了一种更加高效的对象中心化3D语义高斯表征方案,不仅能够精细描述三维场景结构,还大幅度降低了计算资源需求,堪称一项重大突破!

技术分析
GaussianFormer的核心在于其利用高斯混合模型的通用逼近特性,构建了一个对象为中心的3D语义高斯表示法,这有效地避免了使用密集网格所带来的计算冗余问题。该架构包含一个名为"GaussianFormer"的模型,集成了稀疏卷积和交叉注意力机制,用于高效转换二维图像为三维高斯表示;此外,设计有Gaussian-to-Voxel Splatting模块,借助CUDA实现高速的3D占用密度生成过程。实验证明,在保持相近性能的前提下,GaussianFormer相比现有方法减少了高达75.2%-82.2%的内存消耗。
应用场景与技术展现
无论是复杂的驾驶环境下的障碍物识别,还是机器人领域中室内布局的理解与规划,GaussianFormer都能以其高效的物体表示和占用预测功能发挥作用。下图展示了GaussianFormer在不同情境中的应用实例:

结合直观的色彩编码解释,可以清晰了解到每一项图例所代表的含义:

通过与现有技术的比较,可以看出GaussianFormer的优势所在:

特点概览
-
高效表达:采用对象中心化的3D语义高斯表示,大幅减少内存消耗。
-
高性能转化:从二维图像到三维高斯分布的有效转换,提升了整体处理速度。
-
低资源要求:相比传统方法,显著降低运算所需硬件资源,更易于广泛应用。
-
广泛适用性:适用于自动驾驶、机器人技术、虚拟现实等多个领域,潜力巨大。
让我们共同期待GaussianFormer未来的发展,相信这个项目将为三维空间理解和智能系统的进步带来新的可能!
最后,如果您对这一项目感兴趣并认为它有所帮助,请不要忘记引用相关论文,支持作者的研究工作:
@article{huang2024gaussian,
title={GaussianFormer: Scene as Gaussians for Vision-Based 3D Semantic Occupancy Prediction},
author={Huang, Yuanhui and Zheng, Wenzhao and Zhang, Yunpeng and Zhou, Jie and Lu, Jiwen},
journal={arXiv preprint arXiv:2405.17429},
year={2024}
}
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00