ParadeDB v0.15.9版本发布:全文搜索扩展的重大更新
ParadeDB是一个基于PostgreSQL的高性能全文搜索扩展,它通过原生集成到PostgreSQL中,为用户提供了强大的搜索能力。与传统的PostgreSQL全文搜索相比,ParadeDB在性能、功能和易用性方面都有显著提升。
本次发布的v0.15.9版本带来了多项重要改进和功能增强,主要集中在索引合并策略优化、性能提升和bug修复等方面。这些改进使得ParadeDB在处理大规模数据时的表现更加出色,特别是在高并发写入场景下的稳定性有了明显提升。
核心改进:全新的合并策略
v0.15.9版本引入了一个革命性的"LayeredMergePolicy"合并策略,取代了原有的"NPlusOneMergePolicy"。这一变化是本次更新的最大亮点。
在全文搜索引擎中,合并策略决定了如何将多个小的索引段(segment)合并成更大的段,这对查询性能和写入吞吐量都有重大影响。新的LayeredMergePolicy采用了分层合并的方式,能够更高效地组织索引结构,特别是在处理大量小文档或频繁更新的场景下。
与旧策略相比,LayeredMergePolicy具有以下优势:
- 支持并发合并操作,显著提高了索引构建和更新的效率
- 更智能的段选择策略,减少了不必要的合并操作
- 更好的资源利用率,降低了CPU和I/O开销
- 更平滑的性能曲线,避免了旧策略可能导致的性能波动
重要功能增强
除了核心的合并策略改进外,v0.15.9版本还包含以下重要功能增强:
-
片段生成优化:修复了片段生成功能中max_num_chars参数不生效的问题,现在可以更精确地控制返回的文本片段长度。
-
字符串快速字段处理:修复了StringFastFieldExec方法在某些情况下会丢失数据行的问题,提高了数据检索的准确性。
-
批量更新性能:新增了针对批量更新操作的性能测试工具(stressgres),帮助开发者更好地评估和优化大规模数据更新的性能。
兼容性与部署改进
v0.15.9版本在兼容性和部署方面也做了重要调整:
-
PostgreSQL版本支持:移除了对PostgreSQL 13的支持,现在最低支持版本为PostgreSQL 14。这一变化使得开发团队能够更专注于新特性的开发,而不必维护旧版本的兼容性。
-
依赖管理:锁定了pgrx(PostgreSQL Rust扩展框架)的版本,提高了构建的稳定性和可重复性。
-
打包优化:为各种Linux发行版和PostgreSQL版本提供了更全面的预编译包,包括对最新PostgreSQL 17的初步支持。
移除的功能
出于简化和聚焦核心功能的考虑,v0.15.9版本移除了以下功能:
- 遥测功能:完全移除了产品中的遥测数据收集功能,进一步提升了用户隐私保护。
开发者体验改进
对于使用ParadeDB进行开发的工程师,这个版本也带来了多项体验改进:
-
更稳定的API:修复了多个边界条件下的bug,提高了接口的可靠性。
-
增强的测试覆盖:新增了针对片段生成和字符串字段处理的测试用例,确保这些核心功能的稳定性。
-
文档更新:详细记录了新的合并策略API和使用方法,帮助开发者更好地理解和利用这些新特性。
升级建议
对于正在使用ParadeDB的用户,建议尽快升级到v0.15.9版本,特别是那些面临以下场景的项目:
- 需要处理高频率数据更新的应用
- 查询性能出现波动的系统
- 计划迁移到PostgreSQL 16或17的环境
升级过程相对简单,可以通过各Linux发行版的包管理器直接安装新版本。需要注意的是,由于合并策略的变化,首次使用新版本时可能需要重建索引以获得最佳性能。
总的来说,ParadeDB v0.15.9版本通过创新的合并策略和多项功能优化,进一步巩固了其作为PostgreSQL高性能全文搜索解决方案的地位。这些改进使得它能够更好地服务于需要处理大规模文本数据的现代应用场景。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00