Langroid项目中处理大型工具输出的优化方案
2025-06-25 20:45:13作者:何举烈Damon
背景介绍
在Langroid项目中,当使用工具获取额外数据时,经常需要对原始工具输出进行预处理(例如从原始网页中选择相关信息)。然而,这些原始工具输出会被存储在消息历史中,不必要地增加了模型的上下文大小负担。这个问题在RAG(检索增强生成)场景中尤为常见,但解决方案一直不够明确。
问题分析
传统上,开发者可能会尝试使用_llm_response_temp_context或llm_response_forget等底层方法来解决这个问题,但这些方法不够直观且使用复杂。更糟糕的是,设置erase_substeps=True会导致难以预测的行为,正如文档中所警告的那样。
解决方案演进
临时解决方案
在官方提供标准解决方案前,开发者可能会通过继承ChatAgent类并重写llm_response方法来实现功能:
class ForgettingAgent(ChatAgent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._tool_used_in_last_step = False
def llm_response(self, query: None | str | ChatDocument = None) -> Optional[ChatDocument]:
n_msgs = len(self.message_history)
response = super().llm_response(query)
if "TOOL:" in response.content:
self._tool_used_in_last_step = True
return response
else:
self._tool_used_in_last_step = False
self.message_history.pop(-2) if len(self.message_history) > n_msgs else None
return response
这种方法虽然有效,但既不优雅也不便于维护。
官方标准解决方案
Langroid项目在0.22.0版本中引入了更优雅的解决方案。现在,开发者可以通过在工具消息类中设置prevent_result_in_history=True属性来防止原始工具输出被存储在消息历史中。
实现原理是:当这个标志设置为True时,系统会自动从消息历史中移除原始工具输出,只保留处理后的结果。这种方法既保持了代码的简洁性,又提供了明确的控制机制。
最佳实践
在实际开发中,建议采用以下模式处理大型工具输出:
- 对于会产生大量原始数据的工具类,设置
prevent_result_in_history=True - 在工具处理逻辑中,先获取原始数据
- 对原始数据进行预处理,提取关键信息
- 返回处理后的简洁结果
这种模式既避免了上下文膨胀问题,又保持了对话流程的连贯性。
技术实现细节
在底层实现上,Langroid通过以下机制支持这一功能:
- 工具消息处理阶段会检查
prevent_result_in_history标志 - 如果标志为True,系统会在处理完成后自动清理原始输出
- 清理操作不影响后续对话流程,因为系统已经保留了处理后的结果
- 整个过程对开发者透明,无需手动管理消息历史
总结
Langroid项目通过引入prevent_result_in_history机制,为处理大型工具输出提供了优雅的解决方案。这种方法不仅解决了上下文膨胀问题,还保持了API的简洁性和易用性,是处理类似场景的最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1