探索视觉语义推理:VSRN - 为图像-文本匹配打造的新高度
在计算机视觉与自然语言处理的交叉领域中,图像-文本匹配一直是一项关键任务,旨在寻找并理解图像与文本之间的对应关系。【VSRN】(Visual Semantic Reasoning for Image-Text Matching)是一个基于PyTorch的开源项目,它将亮相于2019年国际计算机视觉大会(ICCV)的口头报告环节,并构建于VSE++之上。
项目简介
VSRN的核心理念是解决当前图像表示缺乏全局语义概念的问题,而这些问题在对应的文本描述中是常见的。项目通过构建图像区域之间的联系,并运用图卷积网络(Graph Convolutional Networks)进行推理,以生成带有语义关系特征的新表征。此外,利用门控和记忆机制对这些增强后的特征进行全局语义推理,选择区分度高的信息,逐渐生成场景的整体表示。
实验结果表明,VSRN在MS-COCO和Flickr30K数据集上的图像-文本匹配性能超越了目前最佳方法SCAN,相对提升了6.8%(图像检索)和4.8%(文本检索)在MS-COCO上,而在Flickr30K上,图像检索和文本检索的相对提升分别达到了12.6%和5.8%。值得注意的是,尽管VSRN采用了复杂的模型结构,但其推理阶段的速度相当快,比SCAN快约30倍。

技术分析
VSRN采用了以下关键技术:
- 图像区域连接:构建图像各区域间的联系,以捕捉视觉元素。
- 图卷积网络:通过GCN来挖掘和学习这些区域间的关系。
- 门控和记忆机制:用于从关系增强的特征中进行有效且具有选择性的语义推理。
- 简单相似性函数:仅依赖于内积作为相似性度量,保证了推理阶段的高效性。
应用场景
VSRN的应用广泛,包括但不限于:
- 智能搜索:为图像和文本提供精确匹配,提升搜索引擎的质量。
- 机器翻译:帮助理解图像内容,辅助跨语言翻译。
- 无障碍技术:为视障人士提供图像解释,让他们也能理解图像信息。
- 社交媒体分析:识别和匹配社交平台上的图片和文字,进行内容挖掘。
项目特点
- 创新的推理模型:提出视觉语义推理新方法,改善了图像-文本匹配的准确性。
- 高性能:实验结果显示,VSRN在多个基准数据集上取得新的状态-of-the-art成果。
- 高效率:尽管复杂,但在推理阶段,速度远超同类最佳方法。
- 易于复现和扩展:项目提供了详细的文档和预训练模型,便于研究者进行实验和进一步开发。
要开始使用VSRN,请确保满足Python 2.7,PyTorch 0.4.1等要求,下载数据和预训练模型,并按照提供的指令进行评估或训练。
如果你对此项目感兴趣,希望探索视觉语义推理的广阔天地,那么VSRN无疑是一个值得尝试的选择。请务必在使用过程中引用原论文,尊重作者的辛勤工作!
@inproceedings{li2019vsrn,
title={Visual semantic reasoning for image-text matching},
author={Li, Kunpeng and Zhang, Yulun and Li, Kai and Li, Yuanyuan and Fu, Yun},
booktitle={ICCV},
year={2019}
}
最后,VSRN遵循Apache License 2.0协议,欢迎所有有兴趣的开发者参与贡献和改进。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00