使用XYZNet: 在二维图像空间中学习分割三维点云
2024-05-29 23:05:49作者:农烁颖Land
项目简介
XYZNet 是一个创新的开源项目,它探索如何将复杂的3D点云有效地投影到二维图像空间,使得传统2D卷积神经网络(如U-Net)能够用于点云的分割任务。通过构建图并将其转化为整数规划问题,该项目提出了一种拓扑保留的图到网格映射学习方法。在实践中,为了加速计算,还引入了新颖的分层近似算法。结合Delone三角剖分和多尺度U-Net,XYZNet在ShapeNet和PartNet数据集上展示了卓越的性能,显著超越了现有的技术水平。
技术分析
XYZNet的核心是将3D点云的局部模式转换为2D图像表示,这涉及到图绘制和整数编程的深度融合。它首先利用Delaunay三角化构建点云的图形结构,然后通过一种优化的图到网格映射学习,以保持原始点云的拓扑特性。这种映射被设计为可适应性强且能有效处理复杂点云结构。随后,结合一个多尺度的U-Net,网络可以在2D图像上进行训练,实现高效的分割预测。
应用场景
XYZNet适用于各种3D场景理解任务,包括自动驾驶中的障碍物识别、室内环境的物体分割、机器人导航以及工业检测等。由于其依赖于标准的2D CNN,因此可以轻松地集成到现有计算机视觉系统中,对硬件的要求相对较低。
项目特点
- 拓扑保留映射:通过整数编程,学习到的图到网格映射能最大程度保持3D点云的原始结构。
- 高效算法:分层近似算法大大加速了实际操作中的计算速度。
- 优秀性能:在ShapeNet和PartNet数据集上的测试结果表明,XYZNet的分割精度显著优于同类方法。
- 易于实施:提供完整的Conda环境设置、数据下载与预处理脚本,方便用户快速部署和训练。
为了开始使用XYZNet,只需遵循提供的README指示,从数据准备、模型训练到结果可视化,每个步骤都有详细说明。此外,项目团队还提供了预训练模型和已处理的数据集,以便立即检验模型性能。
引用该项目时,请参考以下文献:
@inproceedings{lyu2020learning,
title={Learning to Segment 3D Point Clouds in 2D Image Space},
author={Lyu, Yecheng and Huang, Xinming and Zhang, Ziming},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={12255--12264},
year={2020}
}
如果你正寻找一种新的、有效的3D点云分割解决方案,XYZNet无疑是一个值得尝试的优秀开源项目。开始你的旅程,探索更广阔的空间!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76