使用XYZNet: 在二维图像空间中学习分割三维点云
2024-05-29 23:05:49作者:农烁颖Land
项目简介
XYZNet 是一个创新的开源项目,它探索如何将复杂的3D点云有效地投影到二维图像空间,使得传统2D卷积神经网络(如U-Net)能够用于点云的分割任务。通过构建图并将其转化为整数规划问题,该项目提出了一种拓扑保留的图到网格映射学习方法。在实践中,为了加速计算,还引入了新颖的分层近似算法。结合Delone三角剖分和多尺度U-Net,XYZNet在ShapeNet和PartNet数据集上展示了卓越的性能,显著超越了现有的技术水平。
技术分析
XYZNet的核心是将3D点云的局部模式转换为2D图像表示,这涉及到图绘制和整数编程的深度融合。它首先利用Delaunay三角化构建点云的图形结构,然后通过一种优化的图到网格映射学习,以保持原始点云的拓扑特性。这种映射被设计为可适应性强且能有效处理复杂点云结构。随后,结合一个多尺度的U-Net,网络可以在2D图像上进行训练,实现高效的分割预测。
应用场景
XYZNet适用于各种3D场景理解任务,包括自动驾驶中的障碍物识别、室内环境的物体分割、机器人导航以及工业检测等。由于其依赖于标准的2D CNN,因此可以轻松地集成到现有计算机视觉系统中,对硬件的要求相对较低。
项目特点
- 拓扑保留映射:通过整数编程,学习到的图到网格映射能最大程度保持3D点云的原始结构。
- 高效算法:分层近似算法大大加速了实际操作中的计算速度。
- 优秀性能:在ShapeNet和PartNet数据集上的测试结果表明,XYZNet的分割精度显著优于同类方法。
- 易于实施:提供完整的Conda环境设置、数据下载与预处理脚本,方便用户快速部署和训练。
为了开始使用XYZNet,只需遵循提供的README指示,从数据准备、模型训练到结果可视化,每个步骤都有详细说明。此外,项目团队还提供了预训练模型和已处理的数据集,以便立即检验模型性能。
引用该项目时,请参考以下文献:
@inproceedings{lyu2020learning,
title={Learning to Segment 3D Point Clouds in 2D Image Space},
author={Lyu, Yecheng and Huang, Xinming and Zhang, Ziming},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={12255--12264},
year={2020}
}
如果你正寻找一种新的、有效的3D点云分割解决方案,XYZNet无疑是一个值得尝试的优秀开源项目。开始你的旅程,探索更广阔的空间!
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.55 K
暂无简介
Dart
559
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
141
12
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
127
104
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.84 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
731
70