MoonRepo v1.35.0 发布:插件化架构升级与性能优化
MoonRepo 是一个现代化的构建系统和任务运行器,旨在为多语言、多项目的代码库提供高效的构建和开发体验。它通过智能的依赖分析和缓存机制,显著提升了开发者的工作效率。最新发布的 v1.35.0 版本带来了多项重要改进,特别是在插件化架构和性能优化方面。
核心架构升级:异步化与插件支持
本次版本最显著的改进是对动作图(action graph)的重构。动作图是 MoonRepo 的核心调度机制,负责管理构建任务之间的依赖关系和执行顺序。新版本的动作图实现了以下重要特性:
-
异步兼容:新的动作图设计为完全异步兼容,为未来的多线程并行构建奠定了基础。这意味着 MoonRepo 可以更高效地利用现代多核处理器的计算能力。
-
边(edge)优化:通过减少节点(动作)之间的关系边数量,降低了图的复杂度,提高了调度效率。这种优化对于大型项目特别有益,可以显著减少内存使用和提高构建速度。
-
新增动作类型:
InstallDependencies:专门用于 WASM 插件的依赖安装SetupEnvironment:在设置工具链后、安装依赖前运行的环境准备阶段- 这些改进使得 MoonRepo 能够更灵活地处理不同语言和工具链的特定需求
任务系统增强
任务系统是开发者日常使用最频繁的部分,v1.35.0 带来了几个实用功能:
-
缓存键定制:新增的
cacheKey选项允许开发者手动指定缓存种子值。这在需要强制刷新缓存或处理特殊构建场景时非常有用。 -
任务优先级:引入了
priority选项,支持critical、high、normal和low四个优先级级别。这使得关键路径上的任务能够优先执行,优化整体构建流程。 -
日志增强:新增的
verbose日志级别包含了 span 信息,为调试复杂构建问题提供了更详细的上下文。
WASM 插件生态扩展
MoonRepo 正在构建一个基于 WASM 的插件生态系统,v1.35.0 实现了 Tier 3 支持等级。新的插件 API 包括:
- 依赖根目录定位 (
locate_dependencies_root) - 环境设置 (
setup_environment) - 依赖安装 (
install_dependencies) - 工具链设置与拆卸 (
setup_toolchain,teardown_toolchain)
这些 API 与 Proto 工具管理器共享相同的接口规范,确保了生态的一致性。开发者可以编写一次插件,同时在 MoonRepo 和 Proto 中使用。
用户体验改进
-
浅色主题:新增了浅色终端主题,可通过
--theme=light或环境变量启用。这对在明亮环境下工作的开发者更加友好。 -
Webhook 扩展:新增了
toolchain.installing和toolchain.installedwebhook,为构建过程监控提供了更细粒度的事件通知。 -
错误处理改进:优化了远程服务通信的错误提示,使问题诊断更加直观。任务超时现在会显示更有帮助的错误信息。
底层优化
-
实验性功能:默认启用了
fasterGlobWalk和gitV2实验特性,提升了文件系统操作和 Git 集成的性能。 -
构建环境升级:Linux 二进制文件现在基于 Ubuntu 22.04 构建,取代了之前的 20.04 基础。
-
依赖更新:升级了 Proto 到 v0.47.11 版本,并采用了 Rust 1.86.0 进行编译,带来了更好的性能和安全性。
总结
MoonRepo v1.35.0 标志着项目向更灵活、更强大的构建系统迈进了一大步。通过重构核心架构、增强插件支持和优化用户体验,这个版本为处理复杂、多语言的项目提供了更好的工具支持。特别是 WASM 插件生态的扩展,为未来的功能扩展和社区贡献打开了大门。对于已经使用 MoonRepo 的团队,升级到这个版本将带来更流畅的构建体验和更多的自定义选项。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00