SST 项目中从 open-next 迁移到 @opennextjs/aws 的指南
在 SST (Serverless Stack) 项目中,近期出现了一个重要的变更:从 open-next 迁移到 @opennextjs/aws。这个变更从版本 3.1.4 开始生效,对于使用 SST 框架开发 Next.js 应用的开发者来说,需要了解这一变化并相应地调整项目配置。
背景与变更原因
SST 框架一直致力于为开发者提供最佳的 Serverless 开发体验。随着 Next.js 生态系统的演进,官方推荐的工具链也在不断优化。从 open-next 迁移到 @opennextjs/aws 正是这一演进过程的一部分,目的是提供更稳定、更高效的构建和部署体验。
变更影响
这一变更主要影响以下几个方面:
- 构建命令的变化
- 依赖管理的变化
- 运行时配置的变化
解决方案
对于 SST v3 用户
在 SST v3 中,可以通过以下方式适配这一变更:
- 在
sst.config.ts文件中明确指定构建命令 - 在项目中单独安装
@opennextjs/aws依赖
配置示例:
new sst.aws.Nextjs("nextjs", {
buildCommand: "yarn opennextjs-build",
runtime: "nodejs20.x",
path: ".",
});
然后在 package.json 中添加相应的脚本:
"scripts": {
"opennextjs-build": "npx @opennextjs/aws build"
}
或者更简洁的方式是直接在配置中指定构建命令:
new sst.aws.Nextjs("nextjs", {
buildCommand: "npx @opennextjs/aws build",
runtime: "nodejs20.x",
path: ".",
});
对于 SST v2 用户
SST v2 用户同样可以通过自定义 buildCommand 来适配这一变更。虽然具体的配置方式可能略有不同,但核心思路是一致的:明确指定使用 @opennextjs/aws 作为构建工具。
最佳实践
-
版本锁定:建议在
package.json中明确指定@opennextjs/aws的版本,以避免潜在的兼容性问题。 -
构建缓存:考虑配置适当的构建缓存策略,以优化构建性能。
-
环境变量管理:确保所有必要的环境变量在构建时和运行时都能正确传递。
-
监控与日志:部署后,密切关注应用的性能和日志,确保一切按预期工作。
迁移后的验证
完成迁移后,建议进行以下验证:
- 构建过程是否成功完成
- 部署后的应用功能是否正常
- 性能指标是否符合预期
- 错误日志中是否有相关警告或错误
总结
这次从 open-next 到 @opennextjs/aws 的迁移是 SST 框架持续优化的一部分。虽然需要开发者做一些配置调整,但这些变化最终会带来更稳定、更高效的开发体验。通过遵循上述指南,开发者可以顺利完成迁移,并继续享受 SST 框架带来的开发便利。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00