在Pyserini中使用训练好的Contriever模型进行检索
Pyserini作为一款强大的信息检索工具包,提供了与多种预训练模型集成的能力。本文将详细介绍如何在Pyserini中使用训练好的Contriever模型进行检索操作。
Contriever模型简介
Contriever是Facebook Research开发的一种基于Transformer的稠密检索模型,它通过对比学习的方式进行训练,能够将查询和文档映射到同一低维空间中进行相似度计算。与传统的稀疏检索方法相比,Contriever等稠密检索模型能够更好地捕捉语义相似性。
加载预训练模型
在Pyserini中,我们可以直接通过Hugging Face模型库加载预训练的Contriever模型:
from pyserini.dsearch import AutoQueryEncoder
encoder = AutoQueryEncoder('facebook/contriever', pooling='mean', device='cuda:0')
这段代码会从Hugging Face模型库下载facebook/contriever预训练模型,并使用均值池化(mean pooling)策略将Transformer的输出转换为固定维度的向量表示。device参数指定了模型运行的设备,这里设置为CUDA设备。
使用自定义训练模型
当我们使用自己的数据对Contriever进行微调后,需要加载自定义训练好的模型。Pyserini同样支持这一功能,只需将模型路径替换为本地保存的checkpoint路径即可:
encoder = AutoQueryEncoder('/path/to/your/trained/model', pooling='mean', device='cuda:0')
其中/path/to/your/trained/model应替换为实际保存模型checkpoint的本地目录路径。这个目录应该包含pytorch_model.bin、config.json等模型必需的文件。
构建检索系统
加载编码器后,我们可以结合Faiss索引构建完整的检索系统:
from pyserini.dsearch import FaissSearcher
# index_dir是预先构建好的Faiss索引目录
searcher = FaissSearcher(index_dir, encoder)
这样我们就创建了一个完整的稠密检索系统,可以使用训练好的Contriever模型进行查询编码和文档检索。
注意事项
- 确保自定义训练模型的架构与原始Contriever保持一致,否则可能导致加载失败
- 模型checkpoint目录应包含完整的模型文件和配置文件
- 使用GPU设备可以显著加速编码过程,但需要确保CUDA环境配置正确
- 对于大规模检索场景,建议预先构建好Faiss索引以提高检索效率
通过上述方法,研究人员可以方便地将自定义训练的Contriever模型集成到Pyserini检索框架中,充分利用稠密检索的优势进行信息检索任务。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00