keystone 的安装和配置教程
2025-05-20 22:59:42作者:蔡丛锟
1. 项目基础介绍和主要编程语言
Keystone 是一个开源项目,旨在简化在 Apache Spark 上的端到端机器学习流程。该项目提供了一套工具和库,帮助用户轻松构建、部署和扩展复杂的机器学习管道。主要编程语言为 Scala,同时也有一些 C++ 和其他语言的元素。
2. 项目使用的关键技术和框架
Keystone 使用了 Apache Spark 作为其计算框架,这是因为它能够提供分布式的计算能力,适用于大规模数据处理。项目还依赖于 Scala 的强大功能,为机器学习任务提供高级抽象和简化的编程模型。此外,Keystone 还可能使用了其他技术和库,例如 TensorFlow 或 PyTorch,用于模型的训练和评估。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装 Keystone 之前,您需要确保以下软件已经安装在您的系统上:
- Java Development Kit (JDK)
- Apache Spark
- Scala
- sbt(Scala Build Tool)
确保您的环境变量 JAVA_HOME 和 SPARK_HOME 已经正确设置,并且您的 PATH 变量包含了 sbt 的路径。
安装步骤
-
克隆项目仓库到本地:
git clone https://github.com/amplab/keystone.git cd keystone -
构建项目:
./sbt/sbt assembly这将编译项目并创建一个包含所有依赖的单一jar文件。
-
构建原生库:
make这一步将构建项目所需的本地库。
-
运行一个示例管道:
为了测试安装,您可以使用内置的 MNIST 示例管道。首先,获取数据:
wget http://mnist-data.s3.amazonaws.com/train-mnist-dense-with-labels.data wget http://mnist-data.s3.amazonaws.com/test-mnist-dense-with-labels.data然后,运行管道:
Keystone_MEM=4g ./bin/run-pipeline.sh \ keystoneml.pipelines.images.mnist.MnistRandomFFT \ --trainLocation ./train-mnist-dense-with-labels.data \ --testLocation ./test-mnist-dense-with-labels.data \ --numFFTs 4 \ --blockSize 2048请根据您的 Spark 版本和系统资源调整
SPARK_HOME和Keystone_MEM。
以上步骤应该能够帮助您成功安装和配置 Keystone 项目。如果遇到任何问题,请检查项目的官方文档或向社区寻求帮助。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248