LangBot项目中使用Ollama部署本地模型报错"无效的api-key"问题解析
在使用LangBot项目对接本地Ollama服务时,部分开发者会遇到"无效的api-key"的错误提示,即使本地部署的模型并不需要API密钥。这个问题通常是由于配置不当引起的,下面将详细分析原因并提供解决方案。
问题现象
当开发者按照常规流程配置LangBot与本地Ollama服务对接时,系统会返回以下错误信息:
模型请求失败: 无效的api-key: Error code: 401
{
'error': {
'message': 'Authentication Fails (no such user)',
'type': 'authentication_error',
'param': None,
'code': 'invalid_request_error'
}
}
根本原因分析
这个问题的产生通常有两个主要原因:
-
模型名称配置错误:在provider.json文件中指定的模型名称与Ollama实际部署的模型名称不匹配,或者没有正确关联到ollama-chat请求器。
-
请求器类型不匹配:在llm-models.json配置文件中,对应模型的requester字段没有正确设置为"ollama-chat",导致系统尝试使用错误的API方式进行调用。
详细解决方案
第一步:验证Ollama服务
首先确保Ollama服务已正确启动并加载了目标模型。可以通过以下命令测试:
curl http://localhost:11434/api/generate -d '{
"model": "deepseek-r1:70b",
"prompt": "你好"
}'
如果服务正常,应该能收到模型的响应。
第二步:检查llm-models.json配置
在LangBot的配置目录中找到llm-models.json文件,确认对应模型的配置包含以下关键字段:
{
"deepseek-chat": {
"requester": "ollama-chat",
"name": "DeepSeek Chat",
"description": "DeepSeek模型通过Ollama部署"
}
}
特别注意"requester"必须设置为"ollama-chat"。
第三步:核对provider.json设置
在provider.json中,确保模型名称与llm-models.json中的定义完全一致:
{
"model": "deepseek-chat",
"apikey": "",
"params": {}
}
本地部署时apikey应保持为空。
第四步:验证Ollama连接参数
在LangBot的大模型请求器设置中,确认Ollama的API URL指向正确的本地地址:
API URL: http://127.0.0.1:11434
API请求超时: 600
补充说明
-
模型命名规范:Ollama部署的模型名称(如deepseek-r1:70b)与LangBot中定义的模型名称(如deepseek-chat)是两个概念,后者是在llm-models.json中定义的标识符。
-
请求器工作原理:ollama-chat请求器是专门为Ollama本地部署设计的,它会忽略apikey字段,直接通过HTTP与本地Ollama服务通信。
-
多模型管理:如果部署了多个模型,需要在llm-models.json中为每个模型创建单独的配置项,并确保requester均为"ollama-chat"。
通过以上步骤检查和修正配置后,LangBot应该能够正常与本地Ollama服务通信,不再出现"无效的api-key"错误提示。如果问题仍然存在,建议检查Ollama服务日志和LangBot的调试日志,获取更详细的错误信息。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00