LangBot项目中使用Ollama部署本地模型报错"无效的api-key"问题解析
在使用LangBot项目对接本地Ollama服务时,部分开发者会遇到"无效的api-key"的错误提示,即使本地部署的模型并不需要API密钥。这个问题通常是由于配置不当引起的,下面将详细分析原因并提供解决方案。
问题现象
当开发者按照常规流程配置LangBot与本地Ollama服务对接时,系统会返回以下错误信息:
模型请求失败: 无效的api-key: Error code: 401
{
'error': {
'message': 'Authentication Fails (no such user)',
'type': 'authentication_error',
'param': None,
'code': 'invalid_request_error'
}
}
根本原因分析
这个问题的产生通常有两个主要原因:
-
模型名称配置错误:在provider.json文件中指定的模型名称与Ollama实际部署的模型名称不匹配,或者没有正确关联到ollama-chat请求器。
-
请求器类型不匹配:在llm-models.json配置文件中,对应模型的requester字段没有正确设置为"ollama-chat",导致系统尝试使用错误的API方式进行调用。
详细解决方案
第一步:验证Ollama服务
首先确保Ollama服务已正确启动并加载了目标模型。可以通过以下命令测试:
curl http://localhost:11434/api/generate -d '{
"model": "deepseek-r1:70b",
"prompt": "你好"
}'
如果服务正常,应该能收到模型的响应。
第二步:检查llm-models.json配置
在LangBot的配置目录中找到llm-models.json文件,确认对应模型的配置包含以下关键字段:
{
"deepseek-chat": {
"requester": "ollama-chat",
"name": "DeepSeek Chat",
"description": "DeepSeek模型通过Ollama部署"
}
}
特别注意"requester"必须设置为"ollama-chat"。
第三步:核对provider.json设置
在provider.json中,确保模型名称与llm-models.json中的定义完全一致:
{
"model": "deepseek-chat",
"apikey": "",
"params": {}
}
本地部署时apikey应保持为空。
第四步:验证Ollama连接参数
在LangBot的大模型请求器设置中,确认Ollama的API URL指向正确的本地地址:
API URL: http://127.0.0.1:11434
API请求超时: 600
补充说明
-
模型命名规范:Ollama部署的模型名称(如deepseek-r1:70b)与LangBot中定义的模型名称(如deepseek-chat)是两个概念,后者是在llm-models.json中定义的标识符。
-
请求器工作原理:ollama-chat请求器是专门为Ollama本地部署设计的,它会忽略apikey字段,直接通过HTTP与本地Ollama服务通信。
-
多模型管理:如果部署了多个模型,需要在llm-models.json中为每个模型创建单独的配置项,并确保requester均为"ollama-chat"。
通过以上步骤检查和修正配置后,LangBot应该能够正常与本地Ollama服务通信,不再出现"无效的api-key"错误提示。如果问题仍然存在,建议检查Ollama服务日志和LangBot的调试日志,获取更详细的错误信息。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00