DeepEval项目中的Synthesizer类生成Golden数据集问题分析
2025-06-04 03:19:01作者:郦嵘贵Just
在DeepEval项目的Synthesizer类中,generate_goldens_from_docs方法存在一个值得注意的设计问题。该方法默认会将生成的数据集推送到Confident AI平台,但这一行为在某些使用场景下可能并不合适。
问题本质
Synthesizer类的generate_goldens_from_docs方法默认设置_send_data=True,这会触发_wrap_up_synthesis方法。然而,当用户没有配置deepeval登录时,该方法会抛出异常,阻止了本地生成Golden数据集的基本功能。
技术细节分析
-
默认行为问题:方法的默认参数设计强制要求用户连接到Confident AI平台,这违背了"本地优先"的开发原则。
-
异常处理不足:当用户仅想本地生成数据集时,系统仍会尝试推送数据,导致不必要的异常。
-
文档缺失:虽然可以通过手动设置_send_data=False来绕过这个问题,但这一重要参数并未在官方文档中说明。
解决方案建议
-
参数默认值调整:应将_send_data的默认值改为False,优先支持本地操作。
-
功能分离:可以考虑将数据推送功能单独封装,而不是与数据生成耦合。
-
文档完善:明确说明各参数的作用和使用场景,特别是与数据存储相关的参数。
最佳实践
对于当前版本,建议开发者在使用时显式设置_send_data=False参数:
synthesizer.generate_goldens_from_docs(
document_paths=documents,
max_goldens_per_context=1,
max_contexts_per_document=1,
chunk_size=128,
chunk_overlap=0,
_send_data=False # 明确禁用数据推送
)
设计思考
这类问题的出现往往源于产品设计时的假设偏差。优秀的开源库应该:
- 优先支持离线/本地使用场景
- 将云服务功能作为可选扩展
- 保持核心功能的独立性
- 提供清晰的文档说明
这种设计理念不仅能提升用户体验,也能增加库的适用范围和灵活性。
总结
DeepEval作为一个评估框架,其Synthesizer组件的数据生成功能应该保持最大程度的灵活性。通过调整默认参数和改善功能设计,可以更好地满足不同用户的需求,无论是需要云集成的用户还是仅需本地功能的开发者。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
703
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
683
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
150
51
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
928
82