DeepEval项目中的Synthesizer类生成Golden数据集问题分析
2025-06-04 15:10:24作者:郦嵘贵Just
在DeepEval项目的Synthesizer类中,generate_goldens_from_docs方法存在一个值得注意的设计问题。该方法默认会将生成的数据集推送到Confident AI平台,但这一行为在某些使用场景下可能并不合适。
问题本质
Synthesizer类的generate_goldens_from_docs方法默认设置_send_data=True,这会触发_wrap_up_synthesis方法。然而,当用户没有配置deepeval登录时,该方法会抛出异常,阻止了本地生成Golden数据集的基本功能。
技术细节分析
-
默认行为问题:方法的默认参数设计强制要求用户连接到Confident AI平台,这违背了"本地优先"的开发原则。
-
异常处理不足:当用户仅想本地生成数据集时,系统仍会尝试推送数据,导致不必要的异常。
-
文档缺失:虽然可以通过手动设置_send_data=False来绕过这个问题,但这一重要参数并未在官方文档中说明。
解决方案建议
-
参数默认值调整:应将_send_data的默认值改为False,优先支持本地操作。
-
功能分离:可以考虑将数据推送功能单独封装,而不是与数据生成耦合。
-
文档完善:明确说明各参数的作用和使用场景,特别是与数据存储相关的参数。
最佳实践
对于当前版本,建议开发者在使用时显式设置_send_data=False参数:
synthesizer.generate_goldens_from_docs(
document_paths=documents,
max_goldens_per_context=1,
max_contexts_per_document=1,
chunk_size=128,
chunk_overlap=0,
_send_data=False # 明确禁用数据推送
)
设计思考
这类问题的出现往往源于产品设计时的假设偏差。优秀的开源库应该:
- 优先支持离线/本地使用场景
- 将云服务功能作为可选扩展
- 保持核心功能的独立性
- 提供清晰的文档说明
这种设计理念不仅能提升用户体验,也能增加库的适用范围和灵活性。
总结
DeepEval作为一个评估框架,其Synthesizer组件的数据生成功能应该保持最大程度的灵活性。通过调整默认参数和改善功能设计,可以更好地满足不同用户的需求,无论是需要云集成的用户还是仅需本地功能的开发者。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
417
仓颉编程语言运行时与标准库。
Cangjie
130
430