Truthish:Kotlin 多平台单元测试库指南
2024-09-12 12:06:30作者:蔡怀权
项目介绍
Truthish 是一个受 Google Truth 启发并完全使用 Kotlin 重写的多平台单元测试库。它旨在允许开发者在 Kotlin 的多平台项目中享受流畅的断言风格进行测试。该库通过提供易于阅读且产生清晰错误信息的断言方式,增强测试代码的可读性和调试效率。
项目快速启动
要开始使用 Truthish,在您的 Kotlin 多平台项目中添加以下依赖至 build.gradle.kts
文件:
repositories {
mavenCentral()
}
kotlin {
jvm()
js(IR).browser()
// 根据你的需求添加其他平台支持
}
sourceSets["commonMain"].dependencies {
implementation("com.varabyte.truthish:truthish:1.0.1")
implementation(kotlin("test"))
}
然后,在你的测试文件中,你可以像这样写断言:
import com.varabyte.truthish.*
@Test
fun testExample() {
assertThat(2 + 2).isEqualTo(4)
assertThat(listOf(1, 2, 3)).containsExactlyInAnyOrder(1, 2, 3)
}
确保配置对应的测试运行器以执行这些测试。
应用案例和最佳实践
流畅断言体验
Truthish 提供的断言方法使得测试逻辑更贴近自然语言,如下面的示例展示的是如何验证一个列表是否按预期排序:
@Test
fun testSortedList() {
val numbers = listOf(1, 2, 3, 4, 5)
assertThat(numbers).isSorted()
}
自定义错误消息
为了提高测试结果的可读性,推荐使用 assertWithMessage
来附加有意义的上下文信息:
@Test
fun testCustomErrorMessage() {
val numbers = listOf(1, 3, 2)
assertWithMessage("Numbers list should be sorted.")
.that(numbers).isSorted()
}
典型生态项目集成
虽然 Truthish 主要作为测试辅助工具,并不直接与其他特定生态项目集成,但它可以在任何使用Kotlin的多平台项目中无缝工作,无论是配合Ktor构建服务端应用,还是在Android开发中作为单元测试框架的一部分。它的设计保证了与Kotlin的原生兼容性,因此容易融入到基于Kotlin的持续集成(CI)流程中,比如Jenkins或GitHub Actions中的Gradle构建任务。
记得在实施到具体项目时,利用其提供的丰富API来构建健壮的测试套件,并关注库的更新日志以获取新功能和改进。
以上就是关于Truthish的基本使用教程,通过这个强大而简洁的库,您可以大幅提升Kotlin多平台项目中单元测试的质量和维护性。
登录后查看全文
热门项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
504
42

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
332
10

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
193
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70