Truthish:Kotlin 多平台单元测试库指南
2024-09-12 19:46:22作者:蔡怀权
项目介绍
Truthish 是一个受 Google Truth 启发并完全使用 Kotlin 重写的多平台单元测试库。它旨在允许开发者在 Kotlin 的多平台项目中享受流畅的断言风格进行测试。该库通过提供易于阅读且产生清晰错误信息的断言方式,增强测试代码的可读性和调试效率。
项目快速启动
要开始使用 Truthish,在您的 Kotlin 多平台项目中添加以下依赖至 build.gradle.kts 文件:
repositories {
mavenCentral()
}
kotlin {
jvm()
js(IR).browser()
// 根据你的需求添加其他平台支持
}
sourceSets["commonMain"].dependencies {
implementation("com.varabyte.truthish:truthish:1.0.1")
implementation(kotlin("test"))
}
然后,在你的测试文件中,你可以像这样写断言:
import com.varabyte.truthish.*
@Test
fun testExample() {
assertThat(2 + 2).isEqualTo(4)
assertThat(listOf(1, 2, 3)).containsExactlyInAnyOrder(1, 2, 3)
}
确保配置对应的测试运行器以执行这些测试。
应用案例和最佳实践
流畅断言体验
Truthish 提供的断言方法使得测试逻辑更贴近自然语言,如下面的示例展示的是如何验证一个列表是否按预期排序:
@Test
fun testSortedList() {
val numbers = listOf(1, 2, 3, 4, 5)
assertThat(numbers).isSorted()
}
自定义错误消息
为了提高测试结果的可读性,推荐使用 assertWithMessage 来附加有意义的上下文信息:
@Test
fun testCustomErrorMessage() {
val numbers = listOf(1, 3, 2)
assertWithMessage("Numbers list should be sorted.")
.that(numbers).isSorted()
}
典型生态项目集成
虽然 Truthish 主要作为测试辅助工具,并不直接与其他特定生态项目集成,但它可以在任何使用Kotlin的多平台项目中无缝工作,无论是配合Ktor构建服务端应用,还是在Android开发中作为单元测试框架的一部分。它的设计保证了与Kotlin的原生兼容性,因此容易融入到基于Kotlin的持续集成(CI)流程中,比如Jenkins或GitHub Actions中的Gradle构建任务。
记得在实施到具体项目时,利用其提供的丰富API来构建健壮的测试套件,并关注库的更新日志以获取新功能和改进。
以上就是关于Truthish的基本使用教程,通过这个强大而简洁的库,您可以大幅提升Kotlin多平台项目中单元测试的质量和维护性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手 宽带跑流量在线时长改串码软件:轻松管理宽带账号的利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137