OpenJ9虚拟机中CRIU与虚拟线程并行度测试问题的技术分析
在OpenJ9虚拟机的JDK24版本测试过程中,发现了一个与CRIU(Checkpoint/Restore In Userspace)功能和虚拟线程相关的测试失败问题。这个问题主要出现在PPC64LE架构的Linux系统上,表现为测试用例cmdLineTester_criu_nonPortableRestoreJDK20Up在执行时发生超时和断言失败。
测试用例的核心目的是验证虚拟线程的ForkJoinPool并行度是否与Runtime.getRuntime().availableProcessors()或jdk.virtualThreadScheduler.parallelism参数设置的值相匹配。测试失败时,系统日志中出现了关键的错误信息,包括一个断言失败:在BytecodeInterpreter.hpp文件的9250行发生了断言错误((0))。
经过深入分析,开发团队发现这个问题与虚拟线程的YieldPinned特性密切相关。当启用-XX:+YieldPinnedVirtualThreads参数时,测试会稳定地重现失败;而禁用该参数(使用-XX:-YieldPinnedVirtualThreads)后,测试则能够顺利通过。这表明问题特定于虚拟线程的挂起和恢复机制与CRIU功能的交互。
CRIU作为Linux内核提供的一种用户空间检查点/恢复功能,允许冻结应用程序并将其状态保存为一系列文件,之后可以从保存的状态恢复执行。在OpenJ9中实现CRIU支持时,需要特别处理线程状态和资源管理,特别是对于Java虚拟线程这种轻量级线程实现。
虚拟线程是Java平台引入的重要特性,它通过ForkJoinPool来调度执行。测试用例验证的核心点是确保在CRIU恢复后,虚拟线程调度器的并行度设置能够正确保持。当YieldPinned特性启用时,虚拟线程在遇到阻塞操作时会主动让出执行权,这可能与CRIU的状态保存和恢复过程产生了某种冲突,导致了断言失败和后续的超时问题。
开发团队采取了临时解决方案,通过PR#21467将相关测试用例排除在测试套件之外。同时,进一步的测试确认了问题确实只出现在YieldPinned特性启用的情况下,这为后续的深入修复提供了明确的方向。
这个问题揭示了在实现高级线程特性与系统级功能(如CRIU)交互时需要特别注意的边界条件。对于虚拟线程这种相对较新的特性,其与底层虚拟机功能的集成仍存在需要完善的地方,特别是在状态保存和恢复这类复杂场景下。
对于使用OpenJ9虚拟机的开发者来说,如果需要在生产环境中使用CRIU功能,目前建议暂时禁用YieldPinnedVirtualThreads选项,以避免潜在的问题。OpenJ9团队将继续跟进此问题,寻找根本原因并实现更完善的解决方案。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0313- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









