YoloDotNet 项目教程
2024-09-19 15:29:00作者:郦嵘贵Just
1. 项目目录结构及介绍
YoloDotNet 项目的目录结构如下:
YoloDotNet/
├── ConsoleDemo/
│ ├── Program.cs
│ └── ...
├── YoloDotNet/
│ ├── Models/
│ ├── Extensions/
│ ├── Enums/
│ ├── Yolo.cs
│ └── ...
├── test/
│ └── ...
├── .gitattributes
├── .gitignore
├── LICENSE.txt
├── README.md
└── YoloDotNet.sln
目录结构介绍
- ConsoleDemo/: 包含项目的控制台演示代码,
Program.cs是启动文件。 - YoloDotNet/: 核心代码目录,包含模型、扩展、枚举等子目录和核心类
Yolo.cs。 - test/: 包含项目的测试代码。
- .gitattributes: Git 属性配置文件。
- .gitignore: Git 忽略配置文件。
- LICENSE.txt: 项目许可证文件。
- README.md: 项目说明文档。
- YoloDotNet.sln: 项目解决方案文件。
2. 项目启动文件介绍
项目的启动文件位于 ConsoleDemo/Program.cs。该文件包含了项目的入口点,用于启动和运行 YoloDotNet 的控制台应用程序。
Program.cs 文件内容概述
using System;
using YoloDotNet;
namespace ConsoleDemo
{
class Program
{
static void Main(string[] args)
{
// 初始化 Yolo 对象
var yolo = new Yolo(@"path\to\model.onnx");
// 加载图像
var image = Image.Load<Rgba32>(@"path\to\image.jpg");
// 运行对象检测
var results = yolo.RunObjectDetection(image, confidence: 0.25, iou: 0.7);
// 处理结果
image.Draw(results);
image.Save(@"path\to\save\image.jpg");
}
}
}
启动文件功能
- 初始化 Yolo 对象: 加载 ONNX 模型。
- 加载图像: 使用 SixLabors.ImageSharp 加载图像。
- 运行对象检测: 调用 Yolo 对象的
RunObjectDetection方法进行对象检测。 - 处理结果: 在图像上绘制检测结果并保存。
3. 项目配置文件介绍
YoloDotNet 项目没有传统的配置文件(如 .config 或 .yaml 文件),但可以通过代码中的配置选项来调整项目的行为。
配置选项示例
var yolo = new Yolo(new YoloOptions
{
OnnxModel = @"path\to\model.onnx",
ModelType = ModelType.ObjectDetection,
Cuda = true,
GpuId = 0,
PrimeGpu = false
});
配置选项说明
- OnnxModel: 指定 ONNX 模型的路径。
- ModelType: 指定模型类型,如
ObjectDetection。 - Cuda: 是否启用 CUDA 加速。
- GpuId: 指定使用的 GPU ID。
- PrimeGpu: 是否预分配 GPU 内存。
通过这些配置选项,可以在代码中灵活地调整 YoloDotNet 的行为,以适应不同的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248