CrunchyData PostgresOperator 中容器资源请求与限制的配置实践
2025-06-15 08:38:09作者:江焘钦
背景介绍
在Kubernetes环境中运行PostgreSQL数据库时,CrunchyData的PostgresOperator是一个常用的管理工具。该Operator会创建包含多个容器的Pod来支持PostgreSQL的各种功能,包括主数据库容器、备份容器、复制证书拷贝容器等。在企业环境中,通常会有安全策略要求所有容器都必须配置资源请求(request)和限制(limit)。
核心问题分析
PostgresCluster CRD中需要配置资源请求和限制的位置较为分散,主要涉及以下几个关键部分:
- 主实例容器:通过
spec.instances[].resources
配置 - 备份作业:通过
spec.backups.pgbackrest.jobs.resources
配置 - 备份仓库主机:通过
spec.backups.pgbackrest.repoHost.resources
配置 - 恢复作业:通过
spec.backups.pgbackrest.restore.resources
配置 - PgBouncer代理:通过
spec.proxy.pgBouncer.resources
配置 - 边车容器:需要单独配置,包括:
- 复制证书拷贝容器:
spec.instances.sidecars.replicaCertCopy.resources
- PgBackRest配置容器:
spec.backups.sidecars.pgbackrestConfig.resources
- PgBackRest容器:
spec.backups.sidecars.pgbackrest.resources
- 复制证书拷贝容器:
典型配置示例
以下是一个典型的资源请求和限制配置示例:
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
spec:
instances:
- name: pg-primary
resources:
requests:
cpu: "1"
memory: 4Gi
limits:
memory: 8Gi
sidecars:
replicaCertCopy:
resources:
requests:
cpu: 50m
memory: 10Mi
limits:
memory: 30Mi
backups:
pgbackrest:
jobs:
resources:
requests:
cpu: "1"
memory: 1Gi
limits:
memory: 2Gi
sidecars:
pgbackrestConfig:
resources:
requests:
cpu: 50m
memory: 10Mi
limits:
memory: 50Mi
pgbackrest:
resources:
requests:
cpu: "1"
memory: 1Gi
limits:
memory: 2Gi
最佳实践建议
- 合理分配资源:主数据库容器应分配较多资源,而辅助容器如证书拷贝容器可以分配较少资源
- 监控调整:部署后应监控各容器实际资源使用情况,适时调整配置
- 统一管理:可以使用Helm等工具将资源配置集中管理,避免重复定义
- 安全合规:确保所有容器(包括init容器)都配置了资源请求和限制,满足企业安全策略要求
总结
CrunchyData PostgresOperator提供了灵活的资源配置选项,但需要仔细配置各个组件的资源请求和限制。通过理解Operator创建的容器架构和相应的配置路径,可以确保PostgreSQL集群既满足性能需求,又符合企业安全合规要求。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133