CrunchyData PostgresOperator 中容器资源请求与限制的配置实践
2025-06-15 14:55:24作者:江焘钦
背景介绍
在Kubernetes环境中运行PostgreSQL数据库时,CrunchyData的PostgresOperator是一个常用的管理工具。该Operator会创建包含多个容器的Pod来支持PostgreSQL的各种功能,包括主数据库容器、备份容器、复制证书拷贝容器等。在企业环境中,通常会有安全策略要求所有容器都必须配置资源请求(request)和限制(limit)。
核心问题分析
PostgresCluster CRD中需要配置资源请求和限制的位置较为分散,主要涉及以下几个关键部分:
- 主实例容器:通过
spec.instances[].resources配置 - 备份作业:通过
spec.backups.pgbackrest.jobs.resources配置 - 备份仓库主机:通过
spec.backups.pgbackrest.repoHost.resources配置 - 恢复作业:通过
spec.backups.pgbackrest.restore.resources配置 - PgBouncer代理:通过
spec.proxy.pgBouncer.resources配置 - 边车容器:需要单独配置,包括:
- 复制证书拷贝容器:
spec.instances.sidecars.replicaCertCopy.resources - PgBackRest配置容器:
spec.backups.sidecars.pgbackrestConfig.resources - PgBackRest容器:
spec.backups.sidecars.pgbackrest.resources
- 复制证书拷贝容器:
典型配置示例
以下是一个典型的资源请求和限制配置示例:
apiVersion: postgres-operator.crunchydata.com/v1beta1
kind: PostgresCluster
spec:
instances:
- name: pg-primary
resources:
requests:
cpu: "1"
memory: 4Gi
limits:
memory: 8Gi
sidecars:
replicaCertCopy:
resources:
requests:
cpu: 50m
memory: 10Mi
limits:
memory: 30Mi
backups:
pgbackrest:
jobs:
resources:
requests:
cpu: "1"
memory: 1Gi
limits:
memory: 2Gi
sidecars:
pgbackrestConfig:
resources:
requests:
cpu: 50m
memory: 10Mi
limits:
memory: 50Mi
pgbackrest:
resources:
requests:
cpu: "1"
memory: 1Gi
limits:
memory: 2Gi
最佳实践建议
- 合理分配资源:主数据库容器应分配较多资源,而辅助容器如证书拷贝容器可以分配较少资源
- 监控调整:部署后应监控各容器实际资源使用情况,适时调整配置
- 统一管理:可以使用Helm等工具将资源配置集中管理,避免重复定义
- 安全合规:确保所有容器(包括init容器)都配置了资源请求和限制,满足企业安全策略要求
总结
CrunchyData PostgresOperator提供了灵活的资源配置选项,但需要仔细配置各个组件的资源请求和限制。通过理解Operator创建的容器架构和相应的配置路径,可以确保PostgreSQL集群既满足性能需求,又符合企业安全合规要求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328