Django Ninja 中处理 PATCH 请求与可选字段的最佳实践
2025-05-28 03:24:23作者:段琳惟
在 Django Ninja 框架中处理 PATCH 请求时,开发者经常会遇到一个常见问题:如何区分客户端想要将字段设置为 None 和客户端根本没有发送该字段的情况。这个问题在 RESTful API 设计中尤为重要,因为 PATCH 请求的本意是部分更新资源,而不是完全替换。
问题背景
当使用 Django Ninja 的 ModelSchema 并设置 fields_optional="__all__"
时,请求负载会包含所有可能的键,即使客户端没有发送某些字段,这些未发送的字段也会被设置为 None。这使得服务器无法区分以下两种情况:
- 客户端明确想要将字段值设置为 None
- 客户端没有发送该字段,意味着不应修改该字段
解决方案探索
使用 exclude_unset 参数
Django Ninja 提供了 .dict(exclude_unset=True)
方法,可以过滤掉未设置的字段。这是目前最常用的解决方案:
@api.patch("/{id}", response=RespSchema)
def patch_view(request, employee_id, body: ReqSchema):
employee = get_object_or_404(Employee, id=employee_id)
filtered_dict = body.dict(exclude_unset=True)
for attr, value in filtered_dict.items():
setattr(employee, attr, value)
这种方法有效地区分了未设置的字段和显式设置为 None 的字段。
可选字段与默认值的区别
在定义 Schema 时,开发者需要注意两种不同的字段定义方式:
- 可选字段:使用
Optional[str]
表示该字段可以完全从请求中省略 - 可空字段:使用
str = None
表示该字段必须提供,但可以设置为 None
正确的用法应该是:
class TheSchema(Schema):
optional_field: Optional[str] # 可以省略
nullable_field: Optional[str] = None # 必须提供但可为None
未来可能的改进
Django Ninja 可能会引入 PatchDict
类型标记,使 PATCH 操作更加优雅:
@api.patch("/patch")
def patch(request, payload: PatchDict[SomeSchema]):
print(payload) # 只包含客户端实际发送的字段
这种设计将使 PATCH 操作更加直观,自动处理字段过滤逻辑。
实际应用建议
对于当前版本的 Django Ninja,建议采用以下模式处理 PATCH 请求:
- 为 PATCH 操作创建专门的 Schema,所有字段都设为 Optional
- 在视图函数中使用
.dict(exclude_unset=True)
获取实际修改的字段 - 使用循环将这些字段应用到模型实例
class EmployeePatchSchema(Schema):
name: Optional[str]
age: Optional[int]
department: Optional[str]
@api.patch("/employees/{id}")
def update_employee(request, id: int, payload: EmployeePatchSchema):
employee = get_object_or_404(Employee, id=id)
update_data = payload.dict(exclude_unset=True)
for field, value in update_data.items():
setattr(employee, field, value)
employee.save()
return employee
这种方法既保持了代码的简洁性,又正确处理了部分更新的需求。
总结
Django Ninja 提供了灵活的工具来处理 PATCH 请求和可选字段。通过合理使用 Schema 定义和 .dict(exclude_unset=True)
方法,开发者可以轻松实现符合 REST 原则的部分更新操作。未来随着框架的发展,可能会提供更加简洁的语法糖来进一步简化这一常见模式。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5