DataForScience/Networks项目解析:图结构的四种表示方法
2025-06-01 09:28:48作者:胡唯隽
前言
图结构是描述复杂系统的重要数学工具,广泛应用于社交网络分析、交通规划、生物信息学等领域。本文将基于DataForScience/Networks项目中的内容,深入讲解图的四种基本表示方法:边列表、邻接表、邻接矩阵和邻接字典,帮助读者掌握不同场景下的最佳选择。
准备工作
在开始之前,我们需要导入必要的Python库:
from collections import Counter
from pprint import pprint
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
这些库将帮助我们实现图的表示和可视化。特别地,NumPy将用于高效的矩阵运算,而Matplotlib则用于图形展示。
1. 边列表(Edge List)
边列表是最直观的图表示方法,它简单地记录了图中所有的边。
基本实现
edge_list = [
('A', 'B'),
('A', 'C'),
('A', 'E'),
('B', 'C'),
('C', 'D'),
('C', 'E'),
('D', 'E')]
特点分析
- 优点:结构简单,易于理解和实现;许多真实数据集都采用这种格式
- 缺点:
- 无法显式表示孤立的节点(不参与任何边的节点)
- 无法直接体现图是有向还是无向
- 查询特定节点的邻居效率较低
基本统计量计算
计算边数非常简单:
number_edges = len(edge_list) # 结果为7
计算节点数需要额外处理:
nodes = set()
for edge in edge_list:
nodes.update(edge)
number_nodes = len(nodes) # 结果为5
2. 邻接表(Adjacency List)
邻接表通过字典结构,将每个节点映射到其邻居集合,提高了查询效率。
有向图实现
adj_list = {}
for node_i, node_j in edge_list:
if node_i not in adj_list:
adj_list[node_i] = set()
adj_list[node_i].add(node_j)
无向图实现
无向图需要为每条边添加双向连接:
adj_list = {}
for node_i, node_j in edge_list:
if node_i not in adj_list:
adj_list[node_i] = set()
adj_list[node_i].add(node_j)
# 添加反向边
if node_j not in adj_list:
adj_list[node_j] = set()
adj_list[node_j].add(node_i)
特点分析
- 优点:
- 空间效率高,只存储实际存在的连接
- 查询特定节点的邻居效率高
- 缺点:
- 检查两个节点是否相连的效率不如邻接矩阵
- 实现带权图需要额外处理
3. 邻接矩阵(Adjacency Matrix)
邻接矩阵使用二维数组表示节点间的连接关系,适合稠密图的数学运算。
实现步骤
- 建立节点到数字ID的映射:
node_id = {}
node_count = 0
for node_i, node_j in edge_list:
if node_i not in node_id:
node_id[node_i] = node_count
node_count += 1
if node_j not in node_id:
node_id[node_j] = node_count
node_count += 1
- 初始化并填充邻接矩阵:
adj_matrix = np.zeros((node_count, node_count), dtype='int')
is_directed = False
for node_i, node_j in edge_list:
node_i = node_id[node_i]
node_j = node_id[node_j]
adj_matrix[node_i, node_j] = 1
if not is_directed:
adj_matrix[node_j, node_i] = 1
特点分析
- 优点:
- 数学运算方便,适合图算法实现
- 检查节点连接性效率高
- 缺点:
- 空间复杂度高(O(n²))
- 稀疏图时空间浪费严重
4. 邻接字典(Adjacency Dict)
邻接字典是最灵活的表示方法,可以存储节点和边的各种属性。
实现方法
nodes = {}
edges = {}
is_directed = False
for node_i, node_j in edge_list:
if node_i not in nodes:
nodes[node_i] = {} # 可存储节点属性
edges[node_i] = {}
if node_j not in nodes:
nodes[node_j] = {}
if not is_directed:
edges[node_j] = {}
edges[node_i][node_j] = {} # 可存储边属性
if not is_directed:
edges[node_j][node_i] = {}
属性添加示例
edges['A']['B']['weight'] = 3
edges['A']['B']['color'] = 'blue'
特点分析
- 优点:
- 灵活性高,可存储各种属性
- 易于扩展为多重图(允许节点间多条边)
- 缺点:
- 实现复杂度较高
- 某些操作效率不如专用结构
总结比较
| 表示方法 | 空间复杂度 | 查询邻居 | 检查连接 | 灵活性 | 适用场景 |
|---|---|---|---|---|---|
| 边列表 | O(m) | 高 | 高 | 低 | 简单图,数据导入导出 |
| 邻接表 | O(n+m) | 低 | 中 | 中 | 大多数算法实现 |
| 邻接矩阵 | O(n²) | 中 | 低 | 低 | 稠密图,数学运算 |
| 邻接字典 | O(n+m) | 中 | 中 | 高 | 属性图,复杂网络 |
在实际应用中,应根据具体需求选择合适的表示方法。DataForScience/Networks项目推荐使用邻接字典作为默认选择,因其在灵活性和功能性之间取得了良好平衡。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 Python案例资源下载 - 从入门到精通的完整项目代码合集
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
247
2.45 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
297
仓颉编程语言测试用例。
Cangjie
34
80
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
355
1.7 K
暂无简介
Dart
545
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
595
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
407
Ascend Extension for PyTorch
Python
85
118