JeecgBoot项目中积木报表与积本BI的Token传递问题分析
问题背景
在JeecgBoot 3.43版本中,当用户在使用积木报表(JimuReport)和积本BI两个功能模块之间进行切换时,出现了Token传递不一致的问题。具体表现为从积木报表切换到积本BI时Token能够正常传递,但从积本BI切换回积木报表时Token却丢失了。
技术分析
这种Token传递问题通常涉及以下几个方面:
-
前端路由跳转机制:两个模块间的切换方式可能采用了不同的路由跳转策略,导致Token传递行为不一致。
-
Token存储与传递机制:JeecgBoot框架通常使用JWT Token进行身份验证,Token可能存储在localStorage或sessionStorage中。不同模块对Token的读取方式可能存在差异。
-
跨域问题:如果两个模块部署在不同的域名或端口下,可能会触发浏览器的同源策略限制,导致Token无法自动传递。
-
菜单集成方式:从技术专家的回复可以看出,推荐的做法是为两个功能分别创建独立的菜单项,而不是使用跳转模式,这样可以避免Token传递问题。
解决方案
针对这一问题,开发团队已经确认将在下一个版本中修复。对于当前版本,用户可以采取以下临时解决方案:
-
独立菜单方案:按照技术专家的建议,为积木报表和积本BI分别创建独立的菜单项,避免使用跳转模式。
-
Token手动传递:在跳转时手动将Token作为参数传递,并在目标页面中重新获取和设置。
-
统一Token管理:确保两个模块使用相同的Token存储和读取机制,避免不一致的情况。
最佳实践建议
对于类似的多模块集成场景,建议:
-
采用统一的身份验证机制,确保Token在整个应用生命周期内有效。
-
避免使用页面跳转方式集成不同功能模块,而是采用独立的菜单入口。
-
对于必须使用跳转的场景,确保Token传递机制的可靠性和一致性。
-
在开发过程中,加强对跨模块交互的测试,特别是身份验证相关功能。
总结
JeecgBoot框架中积木报表与积本BI的Token传递问题是一个典型的前端路由和身份验证集成问题。通过理解其背后的技术原理,开发者可以更好地规划系统架构,避免类似问题的发生。即将发布的修复版本将解决这一问题,同时开发者也应遵循框架推荐的最佳实践来构建更稳定的应用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00