PyTorch/XLA 项目中 SDPA 在 TPU v5e 上的性能退化问题分析
2025-06-30 06:10:59作者:昌雅子Ethen
在 PyTorch/XLA 项目的 2.6.0 版本中,用户发现了一个严重的性能退化问题:当在 TPU v5e 设备上使用 torch.nn.functional.scaled_dot_product_attention (SDPA) 函数时,其执行速度比之前的版本慢了超过 100 倍。这个问题对于依赖注意力机制的现代神经网络架构有着重大影响。
问题表现
通过基准测试可以清楚地看到性能差异。在 2.4.0 和 2.5.1 版本中,SDPA 函数的执行时间约为 0.7 毫秒(无混合精度)和 0.25 毫秒(混合精度),与标准注意力实现相当。然而在 2.6.0 版本中,SDPA 的执行时间飙升至约 116 毫秒(无混合精度)和 106 毫秒(混合精度),而标准注意力实现仍保持原有性能。
问题根源
深入分析后发现,问题的根源在于 PyTorch 的一个相关提交引入了对 isneginf() 函数的使用,而 XLA 后端未能正确降低这个操作。这导致部分计算意外地回退到 CPU 执行,从而造成了严重的性能下降。
具体来说,当 XLA 遇到无法降低的操作时,会使用 xla_fallback 机制(以前称为 xla_cpu_fallback)将计算回退到 CPU。在 TPU 环境中,这种 CPU 回退操作会带来巨大的性能开销。
解决方案
PyTorch/XLA 团队采取了以下措施解决这个问题:
- 实现了 isneginf 操作在 XLA 后端的正确降低,避免了不必要的 CPU 回退
- 通过添加适当的测试用例确保类似问题不会再次发生
- 将修复向后移植到 2.7 版本分支
技术启示
这个案例为我们提供了几个重要的技术启示:
- 性能回归测试的重要性:即使功能正确,性能退化也可能严重影响实际应用
- 跨设备兼容性:在 PyTorch 核心的改动可能对不同的后端(如 XLA/TPU)产生意外影响
- 回退机制的代价:虽然回退机制保证了功能的可用性,但可能带来严重的性能惩罚
对于使用 PyTorch/XLA 进行 TPU 开发的用户,建议:
- 定期进行性能基准测试,特别是在版本升级时
- 关注官方发布的已知问题和修复
- 对于关键操作,考虑实现替代版本作为性能对比参考
这个问题也展示了开源社区协作的价值,从问题报告到根本原因分析,再到解决方案的实施和验证,整个过程体现了开发者社区的效率和专业性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1