OpenXR-SDK-Source 项目教程
1. 项目目录结构及介绍
OpenXR-SDK-Source 项目是一个用于实现 OpenXR 加载器、验证层和代码示例的源代码和构建脚本的集合。以下是项目的主要目录结构及其介绍:
OpenXR-SDK-Source/
├── BUILDING.md # 构建项目的说明文档
├── README.md # 项目介绍文档
├── COPYING.adoc # 版权和许可信息
├── CODE_OF_CONDUCT.md # 行为准则
├── external/ # 外部代码,用于项目中的各个部分
├── include/ # OpenXR 平台包含文件
├── specification/ # OpenXR 规范文件
├── src/ # 源代码目录
│ ├── api_layer/ # API 层示例代码
│ ├── loader/ # OpenXR 加载器代码
│ └── tests/ # 各种测试代码(包括 hello_xr 示例)
└── maintainer-scripts/ # 维护者脚本
1.1 BUILDING.md
该文件包含了构建项目的详细说明,包括所需的依赖项和构建步骤。
1.2 README.md
项目的主介绍文件,包含了项目的基本信息、目录结构和构建说明。
1.3 COPYING.adoc
版权和许可信息文件,详细说明了项目的许可条款。
1.4 CODE_OF_CONDUCT.md
行为准则文件,规定了项目社区的行为规范。
1.5 external/
包含项目中使用的外部代码库。
1.6 include/
包含 OpenXR 平台相关的头文件。
1.7 specification/
包含 OpenXR 规范文件,定义了 OpenXR 的标准和接口。
1.8 src/
源代码目录,包含了项目的核心代码。
api_layer/: API 层示例代码,展示了如何开发 API 层。loader/: OpenXR 加载器代码,负责加载和管理 OpenXR 运行时。tests/: 各种测试代码,包括hello_xr示例,展示了如何使用 OpenXR API。
1.9 maintainer-scripts/
包含维护者使用的脚本,用于项目的管理和维护。
2. 项目启动文件介绍
项目的启动文件主要集中在 src/tests/hello_xr/ 目录下,hello_xr 是一个示例应用程序,展示了如何使用 OpenXR API 创建一个简单的 XR 应用程序。
2.1 hello_xr.cpp
这是 hello_xr 示例的主要源文件,包含了应用程序的入口点和主要逻辑。它展示了如何初始化 OpenXR 实例、创建会话、处理渲染循环等。
2.2 CMakeLists.txt
在 src/tests/hello_xr/ 目录下的 CMakeLists.txt 文件是用于构建 hello_xr 示例的 CMake 配置文件。它定义了构建目标和依赖项。
3. 项目的配置文件介绍
项目的配置文件主要用于定义构建环境和依赖项。以下是一些关键的配置文件:
3.1 CMakeLists.txt
根目录下的 CMakeLists.txt 文件是项目的主要构建配置文件。它定义了项目的整体结构、构建目标和依赖项。
3.2 BUILDING.md
虽然不是配置文件,但 BUILDING.md 文件包含了详细的构建说明,指导用户如何配置和构建项目。
3.3 src/loader/CMakeLists.txt
该文件是 OpenXR 加载器的构建配置文件,定义了加载器的构建目标和依赖项。
3.4 src/tests/hello_xr/CMakeLists.txt
该文件是 hello_xr 示例的构建配置文件,定义了示例的构建目标和依赖项。
通过这些配置文件,用户可以自定义构建过程,以适应不同的开发环境和需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00