**Universal Recommender 开源项目指南**
2024-08-23 04:02:35作者:虞亚竹Luna
项目介绍
Universal Recommender(UR) 是一个基于 Apache Spark 构建的推荐引擎框架,由 ActionML 开发并维护。它设计用于处理大规模数据集上的个性化推荐问题。UR 结合了协同过滤、基于内容的推荐以及额外的用户和项目属性,以提供更全面、更准确的推荐结果。此框架易于集成且高度可定制,适合那些寻求超越基本协同过滤解决方案的应用场景。
项目快速启动
要快速启动 Universal Recommender,首先确保你的开发环境已安装了 Apache Spark 和 Scala。接下来,通过以下步骤来搭建项目:
环境准备
- 安装 Apache Spark。
- 设置 SPARK_HOME 环境变量指向 Spark 的安装目录。
克隆项目
git clone https://github.com/actionml/universal-recommender.git
cd universal-recommender
编译与构建
使用 sbt 来编译和构建项目:
sbt assembly
这将生成一个包含所有依赖项的可执行 JAR 文件。
运行示例
UR 需要推荐数据集。假设你已经有了一个推荐数据集(例如,ratings.csv),可以使用如下命令运行示例:
spark-submit --class com.actionml.recommend.UniversalRecommender \
--master local[2] \
target/scala-2.12/universal-recommender-assembly-<version>.jar \
--data ratings.csv \
--output recommendations.json
注意替换 <version> 为你实际构建的版本号。
应用案例和最佳实践
Universal Recommender 已被成功应用于电子商务、新闻推荐、娱乐等领域。最佳实践包括:
- 数据预处理:确保数据质量,清理异常值,转换非数值属性。
- 特征工程:利用额外的用户和项目属性增强推荐的准确性。
- 模型调优:实验不同的参数设置,如正则化参数,以找到最优配置。
- A/B 测试:在生产环境中实施 A/B 测试,验证 UR 推荐的效果。
典型生态项目
在推荐系统领域,Universal Recommender 可以与其他工具和服务整合,形成强大的生态系统:
- Spark MLlib: 利用其提供的机器学习算法进行特征提取或复杂分析。
- Hadoop HDFS: 作为大数据存储层,支持 UR 处理大规模数据集。
- Kafka: 实时数据流的处理,使推荐能够响应最新用户行为。
- Elasticsearch: 存储和检索推荐结果,提高查询效率。
- Frontend Frameworks: 如 React 或 Vue,用于展示个性化推荐界面,提升用户体验。
通过结合这些组件,开发者可以构建出响应迅速、个性化的推荐服务系统。
以上就是关于 Universal Recommender 的简要介绍及快速入门指导,深入学习和应用场景探索还需参考项目官方文档和社区资源。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
485
3.59 K
Ascend Extension for PyTorch
Python
297
329
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
260
111
暂无简介
Dart
735
177
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
861
456
React Native鸿蒙化仓库
JavaScript
294
343
仓颉编译器源码及 cjdb 调试工具。
C++
148
880