**Universal Recommender 开源项目指南**
2024-08-23 01:33:52作者:虞亚竹Luna
项目介绍
Universal Recommender(UR) 是一个基于 Apache Spark 构建的推荐引擎框架,由 ActionML 开发并维护。它设计用于处理大规模数据集上的个性化推荐问题。UR 结合了协同过滤、基于内容的推荐以及额外的用户和项目属性,以提供更全面、更准确的推荐结果。此框架易于集成且高度可定制,适合那些寻求超越基本协同过滤解决方案的应用场景。
项目快速启动
要快速启动 Universal Recommender,首先确保你的开发环境已安装了 Apache Spark 和 Scala。接下来,通过以下步骤来搭建项目:
环境准备
- 安装 Apache Spark。
- 设置 SPARK_HOME 环境变量指向 Spark 的安装目录。
克隆项目
git clone https://github.com/actionml/universal-recommender.git
cd universal-recommender
编译与构建
使用 sbt 来编译和构建项目:
sbt assembly
这将生成一个包含所有依赖项的可执行 JAR 文件。
运行示例
UR 需要推荐数据集。假设你已经有了一个推荐数据集(例如,ratings.csv),可以使用如下命令运行示例:
spark-submit --class com.actionml.recommend.UniversalRecommender \
--master local[2] \
target/scala-2.12/universal-recommender-assembly-<version>.jar \
--data ratings.csv \
--output recommendations.json
注意替换 <version> 为你实际构建的版本号。
应用案例和最佳实践
Universal Recommender 已被成功应用于电子商务、新闻推荐、娱乐等领域。最佳实践包括:
- 数据预处理:确保数据质量,清理异常值,转换非数值属性。
- 特征工程:利用额外的用户和项目属性增强推荐的准确性。
- 模型调优:实验不同的参数设置,如正则化参数,以找到最优配置。
- A/B 测试:在生产环境中实施 A/B 测试,验证 UR 推荐的效果。
典型生态项目
在推荐系统领域,Universal Recommender 可以与其他工具和服务整合,形成强大的生态系统:
- Spark MLlib: 利用其提供的机器学习算法进行特征提取或复杂分析。
- Hadoop HDFS: 作为大数据存储层,支持 UR 处理大规模数据集。
- Kafka: 实时数据流的处理,使推荐能够响应最新用户行为。
- Elasticsearch: 存储和检索推荐结果,提高查询效率。
- Frontend Frameworks: 如 React 或 Vue,用于展示个性化推荐界面,提升用户体验。
通过结合这些组件,开发者可以构建出响应迅速、个性化的推荐服务系统。
以上就是关于 Universal Recommender 的简要介绍及快速入门指导,深入学习和应用场景探索还需参考项目官方文档和社区资源。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
670
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
219
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322