Locust性能测试工具配置迁移问题解析
问题背景
在使用Locust性能测试工具时,用户从命令行参数迁移到配置文件方式时遇到了任务无法执行的问题。具体表现为:当使用命令行参数直接运行测试时一切正常,但将相同配置迁移到.conf文件后,测试虽然启动但未执行任何任务。
问题现象分析
用户最初通过命令行运行Locust测试:
locust --headless --users 10 --spawn-rate 1 -H http://localhost:3000
对应的Locust测试脚本locustfile.py内容如下:
from locust import HttpUser, task
class HelloWorldUser(HttpUser):
@task
def hello_world(self):
self.client.get("/health")
当用户尝试将配置迁移到local.conf文件:
locustfile = local.py
headless = true
master = true
expect-workers = 3
host = "http://localhost:3000"
users = 3
spawn-rate = 1
run-time = 1m
然后使用命令locust --config local.conf运行时,测试启动但没有执行任何任务。
问题原因
经过分析,问题主要由以下两个配置项引起:
-
分布式模式配置:配置文件中设置了
master = true,这表示Locust将以主节点模式运行,需要配合工作节点才能执行测试。 -
预期工作节点数:
expect-workers = 3参数指定主节点需要等待3个工作节点连接后才能开始测试,但用户并未启动任何工作节点。
此外,用户还遇到了另一个潜在问题:当测试脚本中使用了配置文件中不存在的标签时,Locust会报错提示"没有定义任务"。
解决方案
针对这个问题,有两种解决方法:
-
移除分布式模式配置:如果不需要分布式测试,可以从配置文件中移除
master和expect-workers相关配置,改为独立运行模式。 -
启动工作节点:如果需要分布式测试,应该按照Locust分布式测试的要求启动相应数量的工作节点。
最终有效的简化配置文件示例如下:
locustfile = load_basics.py
headless = true
host = "http://localhost:50505"
users = 1
spawn-rate = 1
run-time = 1m
最佳实践建议
-
配置迁移注意事项:从命令行参数迁移到配置文件时,需注意参数名称和格式的变化。
-
分布式测试准备:使用分布式模式前,确保理解主节点和工作节点的关系及配置要求。
-
测试脚本验证:确保测试脚本中的任务定义与配置文件中的设置相匹配,避免因标签不匹配导致任务无法执行。
-
逐步调试:遇到问题时,建议从最简单的配置开始,逐步添加参数,便于定位问题。
通过理解Locust的配置机制和运行原理,可以避免这类配置迁移过程中的常见问题,确保性能测试顺利执行。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00