THUDM/slime项目使用指南:从参数配置到自定义训练流程
2025-06-20 13:07:10作者:翟萌耘Ralph
项目概述
THUDM/slime是一个基于强化学习的大模型训练框架,它整合了Megatron-LM的训练能力和SGLang的推理能力,实现了高效的训推一体化流程。本文将详细介绍如何使用slime进行大模型训练,包括参数配置、资源分配、模型加载以及自定义训练流程等核心内容。
集群资源配置
基础资源配置
在slime中,GPU资源分配主要涉及以下关键参数:
- 
训练资源配置
--actor-num-nodes:指定用于RL训练的actor节点数量--actor-num-gpus-per-node:每个actor节点使用的GPU数量
 - 
推理资源配置
--rollout-num-gpus:推理部分(total)需要的GPU数量--rollout-num-gpus-per-engine:每个推理引擎使用的GPU数量(类似于SGLang的tp_size)
 
训推一体模式
通过设置--colocate参数可以启用训推一体模式,此时:
- 训练和推理将共享相同的GPU资源
 --rollout-num-gpus参数将被忽略- 需要特别注意显存管理,可通过调整
--sglang-mem-fraction-static控制显存占用 
模型加载与配置
Megatron模型加载
slime深度集成了Megatron-LM训练框架,加载Megatron模型需要三个关键配置:
1. 模型架构参数
以Qwen3 4B模型为例,典型配置包括:
--num-layers 36
--hidden-size 2560
--ffn-hidden-size 9728
--num-attention-heads 32
--group-query-attention
--num-query-groups 8
--normalization "RMSNorm"
--norm-epsilon 1e-6
2. 并行策略配置
Megatron提供多种并行优化策略:
- 
基础并行:
--tensor-model-parallel-size:张量并行大小--sequence-parallel:建议与张量并行同时启用--pipeline-model-parallel-size:流水线并行大小
 - 
高级并行:
--context-parallel-size:序列并行(类似ring attention)--expert-model-parallel-size:MoE专家并行--expert-tensor-parallel-size:MoE专家张量并行
 
3. 检查点管理
slime支持两种Megatron检查点格式:
- Torch格式:传统格式,需保持并行策略一致
 - Torch_dist格式(推荐):支持自动并行切分
 
关键参数:
--ref-load:参考模型检查点路径--load:训练模型检查点路径--save:模型保存路径
SGLang推理配置
SGLang的配置相对简单:
--hf-checkpoint:指定HuggingFace格式的模型检查点--sglang-context-length:可覆盖模型原始上下文长度限制- 其他SGLang参数需添加
--sglang-前缀,如--sglang-mem-fraction-static 
数据格式与处理
输入数据格式
slime目前仅支持.jsonl格式,每行包含一个JSON对象,示例:
{
  "prompt": [{"content": "数学问题...", "role": "user"}],
  "label": "34",
  "metadata": {"difficulty": "hard"}
}
关键配置参数:
--input-key:指定输入字段(如"prompt")--label-key:指定标签字段(如"label")--apply-chat-template:是否应用聊天模板
自定义训练流程
1. 自定义Rollout函数
slime支持不同级别的数据生成定制:
基础定制:替换默认的generate_rollout函数
- 通过
--rollout-function-path指定自定义实现 - 函数需返回包含tokens、response_length、reward等字段的Sample对象
 
高级定制:仅替换生成逻辑
- 通过
--custom-generate-function-path指定 - 实现异步生成接口,与SGLang router交互
 
2. 自定义Reward模型
通过--custom-rm-path参数可以指定自定义的reward模型实现,用于替代默认的奖励计算逻辑。
技术深度解析
SGLang集成原理
slime通过HttpServerEngineAdapter桥接层实现了与SGLang的深度集成:
- 使用sglang-router进行负载均衡
 - 所有SGLang server通过
/add_worker注册到router - 推理请求通过HTTP发送到router进行分发
 
Megatron集成原理
slime通过复用Megatron的核心组件实现兼容:
- 直接使用Megatron的
parse_args解析参数 - 复用checkpoint保存/加载逻辑
 - 支持通过PYTHONPATH加载自定义Megatron版本
 
关键扩展点:
--custom-megatron-init-path:自定义初始化逻辑--custom-megatron-before-train-step-hook:训练步前回调
最佳实践建议
- 
资源分配:
- 训推分离时确保推理资源充足
 - 训推一体时合理设置
--sglang-mem-fraction-static 
 - 
模型配置:
- 优先使用torch_dist格式检查点
 - 确保并行策略与硬件匹配
 
 - 
性能优化:
- 合理配置重计算参数
 - 根据任务特点调整数据生成策略
 
 - 
定制开发:
- 从小范围hook开始扩展功能
 - 充分利用现有Sample数据结构
 
 
通过本文介绍,您应该已经掌握了使用THUDM/slime进行大模型训练的核心方法。无论是基础训练还是深度定制,slime都提供了灵活的配置选项和扩展接口,能够满足各种复杂场景下的训练需求。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446