THUDM/slime项目使用指南:从参数配置到自定义训练流程
2025-06-20 18:55:04作者:翟萌耘Ralph
项目概述
THUDM/slime是一个基于强化学习的大模型训练框架,它整合了Megatron-LM的训练能力和SGLang的推理能力,实现了高效的训推一体化流程。本文将详细介绍如何使用slime进行大模型训练,包括参数配置、资源分配、模型加载以及自定义训练流程等核心内容。
集群资源配置
基础资源配置
在slime中,GPU资源分配主要涉及以下关键参数:
-
训练资源配置
--actor-num-nodes:指定用于RL训练的actor节点数量--actor-num-gpus-per-node:每个actor节点使用的GPU数量
-
推理资源配置
--rollout-num-gpus:推理部分(total)需要的GPU数量--rollout-num-gpus-per-engine:每个推理引擎使用的GPU数量(类似于SGLang的tp_size)
训推一体模式
通过设置--colocate参数可以启用训推一体模式,此时:
- 训练和推理将共享相同的GPU资源
--rollout-num-gpus参数将被忽略- 需要特别注意显存管理,可通过调整
--sglang-mem-fraction-static控制显存占用
模型加载与配置
Megatron模型加载
slime深度集成了Megatron-LM训练框架,加载Megatron模型需要三个关键配置:
1. 模型架构参数
以Qwen3 4B模型为例,典型配置包括:
--num-layers 36
--hidden-size 2560
--ffn-hidden-size 9728
--num-attention-heads 32
--group-query-attention
--num-query-groups 8
--normalization "RMSNorm"
--norm-epsilon 1e-6
2. 并行策略配置
Megatron提供多种并行优化策略:
-
基础并行:
--tensor-model-parallel-size:张量并行大小--sequence-parallel:建议与张量并行同时启用--pipeline-model-parallel-size:流水线并行大小
-
高级并行:
--context-parallel-size:序列并行(类似ring attention)--expert-model-parallel-size:MoE专家并行--expert-tensor-parallel-size:MoE专家张量并行
3. 检查点管理
slime支持两种Megatron检查点格式:
- Torch格式:传统格式,需保持并行策略一致
- Torch_dist格式(推荐):支持自动并行切分
关键参数:
--ref-load:参考模型检查点路径--load:训练模型检查点路径--save:模型保存路径
SGLang推理配置
SGLang的配置相对简单:
--hf-checkpoint:指定HuggingFace格式的模型检查点--sglang-context-length:可覆盖模型原始上下文长度限制- 其他SGLang参数需添加
--sglang-前缀,如--sglang-mem-fraction-static
数据格式与处理
输入数据格式
slime目前仅支持.jsonl格式,每行包含一个JSON对象,示例:
{
"prompt": [{"content": "数学问题...", "role": "user"}],
"label": "34",
"metadata": {"difficulty": "hard"}
}
关键配置参数:
--input-key:指定输入字段(如"prompt")--label-key:指定标签字段(如"label")--apply-chat-template:是否应用聊天模板
自定义训练流程
1. 自定义Rollout函数
slime支持不同级别的数据生成定制:
基础定制:替换默认的generate_rollout函数
- 通过
--rollout-function-path指定自定义实现 - 函数需返回包含tokens、response_length、reward等字段的Sample对象
高级定制:仅替换生成逻辑
- 通过
--custom-generate-function-path指定 - 实现异步生成接口,与SGLang router交互
2. 自定义Reward模型
通过--custom-rm-path参数可以指定自定义的reward模型实现,用于替代默认的奖励计算逻辑。
技术深度解析
SGLang集成原理
slime通过HttpServerEngineAdapter桥接层实现了与SGLang的深度集成:
- 使用sglang-router进行负载均衡
- 所有SGLang server通过
/add_worker注册到router - 推理请求通过HTTP发送到router进行分发
Megatron集成原理
slime通过复用Megatron的核心组件实现兼容:
- 直接使用Megatron的
parse_args解析参数 - 复用checkpoint保存/加载逻辑
- 支持通过PYTHONPATH加载自定义Megatron版本
关键扩展点:
--custom-megatron-init-path:自定义初始化逻辑--custom-megatron-before-train-step-hook:训练步前回调
最佳实践建议
-
资源分配:
- 训推分离时确保推理资源充足
- 训推一体时合理设置
--sglang-mem-fraction-static
-
模型配置:
- 优先使用torch_dist格式检查点
- 确保并行策略与硬件匹配
-
性能优化:
- 合理配置重计算参数
- 根据任务特点调整数据生成策略
-
定制开发:
- 从小范围hook开始扩展功能
- 充分利用现有Sample数据结构
通过本文介绍,您应该已经掌握了使用THUDM/slime进行大模型训练的核心方法。无论是基础训练还是深度定制,slime都提供了灵活的配置选项和扩展接口,能够满足各种复杂场景下的训练需求。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1