THUDM/slime项目使用指南:从参数配置到自定义训练流程
2025-06-20 14:58:52作者:翟萌耘Ralph
项目概述
THUDM/slime是一个基于强化学习的大模型训练框架,它整合了Megatron-LM的训练能力和SGLang的推理能力,实现了高效的训推一体化流程。本文将详细介绍如何使用slime进行大模型训练,包括参数配置、资源分配、模型加载以及自定义训练流程等核心内容。
集群资源配置
基础资源配置
在slime中,GPU资源分配主要涉及以下关键参数:
-
训练资源配置
--actor-num-nodes:指定用于RL训练的actor节点数量--actor-num-gpus-per-node:每个actor节点使用的GPU数量
-
推理资源配置
--rollout-num-gpus:推理部分(total)需要的GPU数量--rollout-num-gpus-per-engine:每个推理引擎使用的GPU数量(类似于SGLang的tp_size)
训推一体模式
通过设置--colocate参数可以启用训推一体模式,此时:
- 训练和推理将共享相同的GPU资源
--rollout-num-gpus参数将被忽略- 需要特别注意显存管理,可通过调整
--sglang-mem-fraction-static控制显存占用
模型加载与配置
Megatron模型加载
slime深度集成了Megatron-LM训练框架,加载Megatron模型需要三个关键配置:
1. 模型架构参数
以Qwen3 4B模型为例,典型配置包括:
--num-layers 36
--hidden-size 2560
--ffn-hidden-size 9728
--num-attention-heads 32
--group-query-attention
--num-query-groups 8
--normalization "RMSNorm"
--norm-epsilon 1e-6
2. 并行策略配置
Megatron提供多种并行优化策略:
-
基础并行:
--tensor-model-parallel-size:张量并行大小--sequence-parallel:建议与张量并行同时启用--pipeline-model-parallel-size:流水线并行大小
-
高级并行:
--context-parallel-size:序列并行(类似ring attention)--expert-model-parallel-size:MoE专家并行--expert-tensor-parallel-size:MoE专家张量并行
3. 检查点管理
slime支持两种Megatron检查点格式:
- Torch格式:传统格式,需保持并行策略一致
- Torch_dist格式(推荐):支持自动并行切分
关键参数:
--ref-load:参考模型检查点路径--load:训练模型检查点路径--save:模型保存路径
SGLang推理配置
SGLang的配置相对简单:
--hf-checkpoint:指定HuggingFace格式的模型检查点--sglang-context-length:可覆盖模型原始上下文长度限制- 其他SGLang参数需添加
--sglang-前缀,如--sglang-mem-fraction-static
数据格式与处理
输入数据格式
slime目前仅支持.jsonl格式,每行包含一个JSON对象,示例:
{
"prompt": [{"content": "数学问题...", "role": "user"}],
"label": "34",
"metadata": {"difficulty": "hard"}
}
关键配置参数:
--input-key:指定输入字段(如"prompt")--label-key:指定标签字段(如"label")--apply-chat-template:是否应用聊天模板
自定义训练流程
1. 自定义Rollout函数
slime支持不同级别的数据生成定制:
基础定制:替换默认的generate_rollout函数
- 通过
--rollout-function-path指定自定义实现 - 函数需返回包含tokens、response_length、reward等字段的Sample对象
高级定制:仅替换生成逻辑
- 通过
--custom-generate-function-path指定 - 实现异步生成接口,与SGLang router交互
2. 自定义Reward模型
通过--custom-rm-path参数可以指定自定义的reward模型实现,用于替代默认的奖励计算逻辑。
技术深度解析
SGLang集成原理
slime通过HttpServerEngineAdapter桥接层实现了与SGLang的深度集成:
- 使用sglang-router进行负载均衡
- 所有SGLang server通过
/add_worker注册到router - 推理请求通过HTTP发送到router进行分发
Megatron集成原理
slime通过复用Megatron的核心组件实现兼容:
- 直接使用Megatron的
parse_args解析参数 - 复用checkpoint保存/加载逻辑
- 支持通过PYTHONPATH加载自定义Megatron版本
关键扩展点:
--custom-megatron-init-path:自定义初始化逻辑--custom-megatron-before-train-step-hook:训练步前回调
最佳实践建议
-
资源分配:
- 训推分离时确保推理资源充足
- 训推一体时合理设置
--sglang-mem-fraction-static
-
模型配置:
- 优先使用torch_dist格式检查点
- 确保并行策略与硬件匹配
-
性能优化:
- 合理配置重计算参数
- 根据任务特点调整数据生成策略
-
定制开发:
- 从小范围hook开始扩展功能
- 充分利用现有Sample数据结构
通过本文介绍,您应该已经掌握了使用THUDM/slime进行大模型训练的核心方法。无论是基础训练还是深度定制,slime都提供了灵活的配置选项和扩展接口,能够满足各种复杂场景下的训练需求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
暂无简介
Dart
710
170
Ascend Extension for PyTorch
Python
264
299
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
181
67
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
431
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118